Update app.py
Browse files
app.py
CHANGED
@@ -11,17 +11,12 @@ import shutil
|
|
11 |
import time
|
12 |
from functools import lru_cache
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
print(">> Adding to path:", src_path)
|
19 |
sys.path.insert(0, src_path)
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
# Configure cache directories
|
25 |
base_dir = "/data"
|
26 |
model_cache_dir = os.path.join(base_dir, "txagent_models")
|
27 |
tool_cache_dir = os.path.join(base_dir, "tool_cache")
|
@@ -31,14 +26,14 @@ os.makedirs(model_cache_dir, exist_ok=True)
|
|
31 |
os.makedirs(tool_cache_dir, exist_ok=True)
|
32 |
os.makedirs(file_cache_dir, exist_ok=True)
|
33 |
|
34 |
-
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
35 |
os.environ["HF_HOME"] = model_cache_dir
|
|
|
36 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
37 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
38 |
|
39 |
from txagent.txagent import TxAgent
|
40 |
|
41 |
-
#
|
42 |
def sanitize_utf8(text: str) -> str:
|
43 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
44 |
|
@@ -48,8 +43,7 @@ def file_hash(path: str) -> str:
|
|
48 |
|
49 |
@lru_cache(maxsize=100)
|
50 |
def get_cached_response(prompt: str, file_hash: str) -> Optional[str]:
|
51 |
-
|
52 |
-
return None # Implement actual cache lookup if needed
|
53 |
|
54 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
55 |
try:
|
@@ -90,7 +84,6 @@ def convert_file_to_json(file_path: str, file_type: str) -> str:
|
|
90 |
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
|
91 |
|
92 |
def convert_files_to_json_parallel(uploaded_files: list) -> str:
|
93 |
-
"""Process files in parallel using ThreadPool"""
|
94 |
extracted_text = []
|
95 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
96 |
futures = []
|
@@ -100,14 +93,12 @@ def convert_files_to_json_parallel(uploaded_files: list) -> str:
|
|
100 |
path = file.name
|
101 |
ext = path.split(".")[-1].lower()
|
102 |
futures.append(executor.submit(convert_file_to_json, path, ext))
|
103 |
-
|
104 |
for future in as_completed(futures):
|
105 |
extracted_text.append(sanitize_utf8(future.result()))
|
106 |
return "\n".join(extracted_text)
|
107 |
|
108 |
def init_agent():
|
109 |
-
"""Initialize the TxAgent with optimized settings"""
|
110 |
-
# Copy default tool file if needed
|
111 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
112 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
113 |
if not os.path.exists(target_tool_path):
|
@@ -115,20 +106,16 @@ def init_agent():
|
|
115 |
|
116 |
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
117 |
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
118 |
-
|
119 |
agent = TxAgent(
|
120 |
model_name=model_name,
|
121 |
rag_model_name=rag_model_name,
|
122 |
tool_files_dict={"new_tool": target_tool_path},
|
123 |
force_finish=True,
|
124 |
enable_checker=True,
|
125 |
-
step_rag_num=8,
|
126 |
seed=100,
|
127 |
-
additional_default_tools=[]
|
128 |
-
torch_dtype="auto",
|
129 |
-
device_map="auto",
|
130 |
-
load_in_4bit=False,
|
131 |
-
load_in_8bit=False
|
132 |
)
|
133 |
agent.init_model()
|
134 |
return agent
|
@@ -154,12 +141,9 @@ def create_ui(agent: TxAgent):
|
|
154 |
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
|
155 |
yield history
|
156 |
|
157 |
-
# File processing with timing
|
158 |
-
file_process_time = time.time()
|
159 |
extracted_text = ""
|
160 |
if uploaded_files and isinstance(uploaded_files, list):
|
161 |
extracted_text = convert_files_to_json_parallel(uploaded_files)
|
162 |
-
print(f"File processing took: {time.time() - file_process_time:.2f}s")
|
163 |
|
164 |
context = (
|
165 |
"You are an expert clinical AI assistant. Review this patient's history, "
|
@@ -168,18 +152,16 @@ def create_ui(agent: TxAgent):
|
|
168 |
)
|
169 |
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
|
170 |
|
171 |
-
# Model processing with timing
|
172 |
-
model_start = time.time()
|
173 |
generator = agent.run_gradio_chat(
|
174 |
message=chunked_prompt,
|
175 |
history=[],
|
176 |
temperature=0.3,
|
177 |
-
max_new_tokens=768,
|
178 |
-
max_token=4096,
|
179 |
call_agent=False,
|
180 |
conversation=conversation,
|
181 |
uploaded_files=uploaded_files,
|
182 |
-
max_round=10
|
183 |
)
|
184 |
|
185 |
final_response = []
|
@@ -190,14 +172,12 @@ def create_ui(agent: TxAgent):
|
|
190 |
final_response.append(update)
|
191 |
elif isinstance(update, list):
|
192 |
final_response.extend(msg.content for msg in update if hasattr(msg, 'content'))
|
193 |
-
|
194 |
-
|
195 |
-
if len(final_response) % 3 == 0: # More frequent updates
|
196 |
history[-1] = {"role": "assistant", "content": "".join(final_response).strip()}
|
197 |
yield history
|
198 |
|
199 |
history[-1] = {"role": "assistant", "content": "".join(final_response).strip() or "❌ No response."}
|
200 |
-
print(f"Model processing took: {time.time() - model_start:.2f}s")
|
201 |
yield history
|
202 |
|
203 |
except Exception as chat_error:
|
@@ -220,27 +200,9 @@ def create_ui(agent: TxAgent):
|
|
220 |
return demo
|
221 |
|
222 |
if __name__ == "__main__":
|
223 |
-
# Initialize agent and warm it up
|
224 |
print("Initializing agent...")
|
225 |
agent = init_agent()
|
226 |
-
|
227 |
-
# Warm-up call
|
228 |
-
print("Performing warm-up call...")
|
229 |
-
try:
|
230 |
-
warm_up = agent.run_gradio_chat(
|
231 |
-
message="Warm up",
|
232 |
-
history=[],
|
233 |
-
temperature=0.1,
|
234 |
-
max_new_tokens=10,
|
235 |
-
max_token=100,
|
236 |
-
call_agent=False
|
237 |
-
)
|
238 |
-
for _ in warm_up:
|
239 |
-
pass
|
240 |
-
except:
|
241 |
-
pass
|
242 |
-
|
243 |
-
# Launch Gradio interface
|
244 |
print("Launching interface...")
|
245 |
demo = create_ui(agent)
|
246 |
demo.queue(concurrency_count=3).launch(
|
@@ -248,4 +210,4 @@ if __name__ == "__main__":
|
|
248 |
server_port=7860,
|
249 |
show_error=True,
|
250 |
share=True
|
251 |
-
)
|
|
|
11 |
import time
|
12 |
from functools import lru_cache
|
13 |
|
14 |
+
# ✅ Add src to Python path
|
15 |
+
src_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))
|
16 |
+
print(f"Adding to path: {src_path}")
|
|
|
|
|
17 |
sys.path.insert(0, src_path)
|
18 |
|
19 |
+
# ✅ Configure Hugging Face and cache dirs
|
|
|
|
|
|
|
20 |
base_dir = "/data"
|
21 |
model_cache_dir = os.path.join(base_dir, "txagent_models")
|
22 |
tool_cache_dir = os.path.join(base_dir, "tool_cache")
|
|
|
26 |
os.makedirs(tool_cache_dir, exist_ok=True)
|
27 |
os.makedirs(file_cache_dir, exist_ok=True)
|
28 |
|
|
|
29 |
os.environ["HF_HOME"] = model_cache_dir
|
30 |
+
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
|
31 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
32 |
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
33 |
|
34 |
from txagent.txagent import TxAgent
|
35 |
|
36 |
+
# ✅ Utils
|
37 |
def sanitize_utf8(text: str) -> str:
|
38 |
return text.encode("utf-8", "ignore").decode("utf-8")
|
39 |
|
|
|
43 |
|
44 |
@lru_cache(maxsize=100)
|
45 |
def get_cached_response(prompt: str, file_hash: str) -> Optional[str]:
|
46 |
+
return None
|
|
|
47 |
|
48 |
def convert_file_to_json(file_path: str, file_type: str) -> str:
|
49 |
try:
|
|
|
84 |
return json.dumps({"error": f"Error reading {os.path.basename(file_path)}: {str(e)}"})
|
85 |
|
86 |
def convert_files_to_json_parallel(uploaded_files: list) -> str:
|
|
|
87 |
extracted_text = []
|
88 |
with ThreadPoolExecutor(max_workers=4) as executor:
|
89 |
futures = []
|
|
|
93 |
path = file.name
|
94 |
ext = path.split(".")[-1].lower()
|
95 |
futures.append(executor.submit(convert_file_to_json, path, ext))
|
96 |
+
|
97 |
for future in as_completed(futures):
|
98 |
extracted_text.append(sanitize_utf8(future.result()))
|
99 |
return "\n".join(extracted_text)
|
100 |
|
101 |
def init_agent():
|
|
|
|
|
102 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
103 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
104 |
if not os.path.exists(target_tool_path):
|
|
|
106 |
|
107 |
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
108 |
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
109 |
+
|
110 |
agent = TxAgent(
|
111 |
model_name=model_name,
|
112 |
rag_model_name=rag_model_name,
|
113 |
tool_files_dict={"new_tool": target_tool_path},
|
114 |
force_finish=True,
|
115 |
enable_checker=True,
|
116 |
+
step_rag_num=8,
|
117 |
seed=100,
|
118 |
+
additional_default_tools=[]
|
|
|
|
|
|
|
|
|
119 |
)
|
120 |
agent.init_model()
|
121 |
return agent
|
|
|
141 |
history.append({"role": "assistant", "content": "⏳ Processing your request..."})
|
142 |
yield history
|
143 |
|
|
|
|
|
144 |
extracted_text = ""
|
145 |
if uploaded_files and isinstance(uploaded_files, list):
|
146 |
extracted_text = convert_files_to_json_parallel(uploaded_files)
|
|
|
147 |
|
148 |
context = (
|
149 |
"You are an expert clinical AI assistant. Review this patient's history, "
|
|
|
152 |
)
|
153 |
chunked_prompt = f"{context}\n\n--- Patient Record ---\n{extracted_text}\n\n[Final Analysis]"
|
154 |
|
|
|
|
|
155 |
generator = agent.run_gradio_chat(
|
156 |
message=chunked_prompt,
|
157 |
history=[],
|
158 |
temperature=0.3,
|
159 |
+
max_new_tokens=768,
|
160 |
+
max_token=4096,
|
161 |
call_agent=False,
|
162 |
conversation=conversation,
|
163 |
uploaded_files=uploaded_files,
|
164 |
+
max_round=10
|
165 |
)
|
166 |
|
167 |
final_response = []
|
|
|
172 |
final_response.append(update)
|
173 |
elif isinstance(update, list):
|
174 |
final_response.extend(msg.content for msg in update if hasattr(msg, 'content'))
|
175 |
+
|
176 |
+
if len(final_response) % 3 == 0:
|
|
|
177 |
history[-1] = {"role": "assistant", "content": "".join(final_response).strip()}
|
178 |
yield history
|
179 |
|
180 |
history[-1] = {"role": "assistant", "content": "".join(final_response).strip() or "❌ No response."}
|
|
|
181 |
yield history
|
182 |
|
183 |
except Exception as chat_error:
|
|
|
200 |
return demo
|
201 |
|
202 |
if __name__ == "__main__":
|
|
|
203 |
print("Initializing agent...")
|
204 |
agent = init_agent()
|
205 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
print("Launching interface...")
|
207 |
demo = create_ui(agent)
|
208 |
demo.queue(concurrency_count=3).launch(
|
|
|
210 |
server_port=7860,
|
211 |
show_error=True,
|
212 |
share=True
|
213 |
+
)
|