File size: 11,100 Bytes
f75a23b f394b25 d184610 a57b988 f394b25 7771dd9 d16299c 1c5bd8e da7f195 d8282f1 3ed8d49 f6e551c d16299c f6e551c a57b988 f6e551c 3ed8d49 f6e551c 4bfbcac 0fb33af f75a23b 62ef904 8b1bbeb 1244d40 7a8204e f6e551c d16299c f6e551c d16299c a57b988 7771dd9 ad85a12 6f1a22c 7771dd9 7061d83 8b1bbeb 7061d83 914f0cf 7771dd9 914f0cf 7061d83 8b1bbeb da7f195 8b1bbeb 6f1a22c 8b1bbeb 7771dd9 3ed8d49 ad85a12 3ed8d49 ad85a12 3ed8d49 7771dd9 3ed8d49 ad85a12 a57b988 7771dd9 0e6914c 7771dd9 3ed8d49 7771dd9 a57b988 73810ec 7771dd9 3ed8d49 da7f195 3ed8d49 7061d83 73810ec 7061d83 da7f195 7061d83 da7f195 73810ec da7f195 73810ec da7f195 73810ec da7f195 a57b988 7771dd9 6762641 ca6d5de 6762641 8b1bbeb 7771dd9 8b1bbeb 6762641 7771dd9 6762641 7771dd9 6762641 7771dd9 6762641 7771dd9 6762641 7771dd9 6762641 7771dd9 6762641 da7f195 7771dd9 3ed8d49 7771dd9 3ed8d49 0fb33af a71a831 55e3db0 abd27cc d8282f1 a57b988 da7f195 7061d83 7771dd9 7061d83 d8282f1 da7f195 7771dd9 7061d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator, BinaryIO, Dict, Any
import re
from datetime import datetime
import atexit
import torch.distributed as dist
import logging
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Cleanup for PyTorch distributed
def cleanup():
if dist.is_initialized():
logger.info("Cleaning up PyTorch distributed process group")
dist.destroy_process_group()
atexit.register(cleanup)
# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent
MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500
def clean_response(text: str) -> str:
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1
def extract_text_from_excel(file_obj: Union[str, Dict[str, Any]]) -> str:
"""Handle Gradio file upload object which is a dictionary with 'name' and other keys"""
all_text = []
try:
if isinstance(file_obj, dict) and 'name' in file_obj:
file_path = file_obj['name']
elif isinstance(file_obj, str):
file_path = file_obj
else:
raise ValueError("Unsupported file input type")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Temporary upload file not found at: {file_path}")
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
try:
df = xls.parse(sheet_name).astype(str).fillna("")
rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
all_text.extend(sheet_text)
except Exception as e:
logger.warning(f"Could not parse sheet {sheet_name}: {e}")
continue
return "\n".join(all_text)
except Exception as e:
raise ValueError(f"โ Error processing Excel file: {str(e)}")
def split_text_into_chunks(text: str) -> List[str]:
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
for line in lines:
t = estimate_tokens(line)
if curr_tokens + t > effective_max:
if curr_chunk:
chunks.append("\n".join(curr_chunk))
curr_chunk, curr_tokens = [line], t
else:
curr_chunk.append(line)
curr_tokens += t
if curr_chunk:
chunks.append("\n".join(curr_chunk))
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Clinical Records Analysis
Please analyze these clinical notes and provide:
- Key diagnostic indicators
- Current medications and potential issues
- Recommended follow-up actions
- Any inconsistencies or concerns
---
{chunk}
---
Provide a structured response with clear medical reasoning.
"""
def validate_tool_file(tool_name: str, tool_path: str) -> None:
"""Validate the structure of a tool JSON file."""
try:
if not os.path.exists(tool_path):
raise FileNotFoundError(f"Tool file not found: {tool_path}")
with open(tool_path, 'r') as f:
tool_data = json.load(f)
logger.info(f"Contents of {tool_name} ({tool_path}): {tool_data}")
if isinstance(tool_data, list):
for item in tool_data:
if not isinstance(item, dict) or 'name' not in item:
raise ValueError(f"Invalid tool format in {tool_name}: each item must be a dict with a 'name' key, got {item}")
elif isinstance(tool_data, dict):
if 'tools' in tool_data:
if not isinstance(tool_data['tools'], list):
raise ValueError(f"'tools' field in {tool_name} must be a list, got {type(tool_data['tools'])}")
for item in tool_data['tools']:
if not isinstance(item, dict) or 'name' not in item:
raise ValueError(f"Invalid tool format in {tool_name}: each tool must be a dict with a 'name' key, got {item}")
else:
if 'name' not in tool_data:
raise ValueError(f"Invalid tool format in {tool_name}: dict must have a 'name' key or 'tools' field, got {tool_data}")
else:
raise ValueError(f"Invalid tool file {tool_name}: must be a list or dict, got {type(tool_data)}")
except Exception as e:
logger.error(f"Error validating tool file {tool_name} ({tool_path}): {str(e)}")
raise
def init_agent() -> TxAgent:
tool_path = os.path.join(tool_cache_dir, "new_tool.json")
logger.info(f"Checking for tool file at: {tool_path}")
# Create default tool file if it doesn't exist
if not os.path.exists(tool_path):
default_tool = {
"name": "new_tool",
"description": "Default tool configuration",
"version": "1.0",
"tools": [
{"name": "dummy_tool", "description": "Dummy tool for testing", "version": "1.0"}
]
}
logger.info(f"Creating default tool file at: {tool_path}")
with open(tool_path, 'w') as f:
json.dump(default_tool, f)
# Define tool files
tool_files_dict = {
'opentarget': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/opentarget_tools.json',
'fda_drug_label': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/fda_drug_labeling_tools.json',
'special_tools': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/special_tools.json',
'monarch': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/monarch_tools.json',
'new_tool': tool_path
}
# Validate all tool files
for tool_name, tool_path in tool_files_dict.items():
validate_tool_file(tool_name, tool_path)
# Initialize TxAgent
try:
logger.info(f"Initializing TxAgent with tool_files_dict: {tool_files_dict}")
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict=tool_files_dict,
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100
)
logger.info("TxAgent initialized, calling init_model")
agent.init_model()
logger.info("TxAgent model initialized successfully")
return agent
except Exception as e:
logger.error(f"Error initializing TxAgent: {str(e)}", exc_info=True)
raise
def stream_report(agent: TxAgent, input_file: Union[str, Dict[str, Any]], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
accumulated_text = ""
try:
if input_file is None:
yield "โ Please upload a valid Excel file.", None, ""
return
try:
text = extract_text_from_excel(input_file)
chunks = split_text_into_chunks(text)
except Exception as e:
yield f"โ {str(e)}", None, ""
return
for i, chunk in enumerate(chunks):
prompt = build_prompt_from_text(chunk)
partial = ""
for res in agent.run_gradio_chat(
message=prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
partial += res if isinstance(res, str) else res.content
cleaned = clean_response(partial)
accumulated_text += f"\n\n๐ Analysis Part {i+1}:\n{cleaned}"
yield accumulated_text, None, ""
summary_prompt = f"Please summarize this analysis:\n\n{accumulated_text}"
final_report = ""
for res in agent.run_gradio_chat(
message=summary_prompt, history=[], temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
call_agent=False, conversation=[]
):
final_report += res if isinstance(res, str) else res.content
cleaned = clean_response(final_report)
report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w') as f:
f.write(f"# Clinical Analysis Report\n\n{cleaned}")
yield f"{accumulated_text}\n\n๐ Final Summary:\n{cleaned}", report_path, cleaned
except Exception as e:
logger.error(f"Processing error in stream_report: {str(e)}", exc_info=True)
yield f"โ Processing error: {str(e)}", None, ""
def create_ui(agent: TxAgent) -> gr.Blocks:
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
gr.Markdown("""# Clinical Records Analyzer""")
with gr.Row():
file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Row():
with gr.Column(scale=2):
report_output = gr.Markdown()
with gr.Column(scale=1):
report_file = gr.File(label="Download Report", visible=False)
full_output = gr.State()
analyze_btn.click(
fn=stream_report,
inputs=[file_upload, full_output],
outputs=[report_output, report_file, full_output]
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
logger.info("Launching Gradio UI")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
except Exception as e:
logger.error(f"Application error: {str(e)}", exc_info=True)
print(f"Application error: {str(e)}", file=sys.stderr)
sys.exit(1) |