File size: 11,100 Bytes
f75a23b
f394b25
d184610
a57b988
f394b25
7771dd9
d16299c
1c5bd8e
da7f195
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8282f1
3ed8d49
f6e551c
 
d16299c
f6e551c
 
a57b988
f6e551c
 
3ed8d49
 
f6e551c
4bfbcac
0fb33af
f75a23b
62ef904
8b1bbeb
1244d40
7a8204e
 
 
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a57b988
 
 
7771dd9
 
ad85a12
6f1a22c
7771dd9
 
 
7061d83
8b1bbeb
 
7061d83
914f0cf
7771dd9
914f0cf
7061d83
8b1bbeb
 
 
 
 
 
 
 
da7f195
8b1bbeb
 
 
 
6f1a22c
8b1bbeb
 
7771dd9
 
3ed8d49
ad85a12
3ed8d49
 
 
 
 
ad85a12
3ed8d49
 
7771dd9
3ed8d49
ad85a12
 
 
a57b988
7771dd9
0e6914c
7771dd9
 
 
 
 
3ed8d49
 
 
 
 
 
7771dd9
a57b988
 
73810ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7771dd9
3ed8d49
da7f195
 
 
3ed8d49
7061d83
 
 
 
73810ec
 
 
7061d83
da7f195
7061d83
 
da7f195
73810ec
 
 
 
 
 
 
 
 
 
 
 
 
da7f195
 
73810ec
da7f195
 
 
73810ec
da7f195
 
 
 
 
 
 
 
 
 
 
 
a57b988
7771dd9
6762641
 
ca6d5de
6762641
 
 
8b1bbeb
 
7771dd9
8b1bbeb
 
 
 
6762641
 
 
 
 
 
 
 
7771dd9
 
6762641
7771dd9
6762641
 
7771dd9
6762641
 
 
 
 
 
7771dd9
6762641
 
 
 
7771dd9
6762641
7771dd9
6762641
 
da7f195
7771dd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ed8d49
 
 
 
7771dd9
3ed8d49
0fb33af
a71a831
55e3db0
abd27cc
d8282f1
a57b988
 
da7f195
7061d83
7771dd9
 
 
7061d83
d8282f1
da7f195
7771dd9
7061d83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator, BinaryIO, Dict, Any
import re
from datetime import datetime
import atexit
import torch.distributed as dist
import logging

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Cleanup for PyTorch distributed
def cleanup():
    if dist.is_initialized():
        logger.info("Cleaning up PyTorch distributed process group")
        dist.destroy_process_group()

atexit.register(cleanup)

# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_obj: Union[str, Dict[str, Any]]) -> str:
    """Handle Gradio file upload object which is a dictionary with 'name' and other keys"""
    all_text = []
    try:
        if isinstance(file_obj, dict) and 'name' in file_obj:
            file_path = file_obj['name']
        elif isinstance(file_obj, str):
            file_path = file_obj
        else:
            raise ValueError("Unsupported file input type")
            
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Temporary upload file not found at: {file_path}")
            
        xls = pd.ExcelFile(file_path)
        
        for sheet_name in xls.sheet_names:
            try:
                df = xls.parse(sheet_name).astype(str).fillna("")
                rows = df.apply(lambda row: " | ".join([cell for cell in row if cell.strip()]), axis=1)
                sheet_text = [f"[{sheet_name}] {line}" for line in rows if line.strip()]
                all_text.extend(sheet_text)
            except Exception as e:
                logger.warning(f"Could not parse sheet {sheet_name}: {e}")
                continue
                
        return "\n".join(all_text)
        
    except Exception as e:
        raise ValueError(f"โŒ Error processing Excel file: {str(e)}")

def split_text_into_chunks(text: str) -> List[str]:
    effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
    lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
    for line in lines:
        t = estimate_tokens(line)
        if curr_tokens + t > effective_max:
            if curr_chunk:
                chunks.append("\n".join(curr_chunk))
            curr_chunk, curr_tokens = [line], t
        else:
            curr_chunk.append(line)
            curr_tokens += t
    if curr_chunk:
        chunks.append("\n".join(curr_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Clinical Records Analysis

Please analyze these clinical notes and provide:
- Key diagnostic indicators
- Current medications and potential issues
- Recommended follow-up actions
- Any inconsistencies or concerns

---

{chunk}

---
Provide a structured response with clear medical reasoning.
"""

def validate_tool_file(tool_name: str, tool_path: str) -> None:
    """Validate the structure of a tool JSON file."""
    try:
        if not os.path.exists(tool_path):
            raise FileNotFoundError(f"Tool file not found: {tool_path}")
        
        with open(tool_path, 'r') as f:
            tool_data = json.load(f)
        
        logger.info(f"Contents of {tool_name} ({tool_path}): {tool_data}")
        
        if isinstance(tool_data, list):
            for item in tool_data:
                if not isinstance(item, dict) or 'name' not in item:
                    raise ValueError(f"Invalid tool format in {tool_name}: each item must be a dict with a 'name' key, got {item}")
        elif isinstance(tool_data, dict):
            if 'tools' in tool_data:
                if not isinstance(tool_data['tools'], list):
                    raise ValueError(f"'tools' field in {tool_name} must be a list, got {type(tool_data['tools'])}")
                for item in tool_data['tools']:
                    if not isinstance(item, dict) or 'name' not in item:
                        raise ValueError(f"Invalid tool format in {tool_name}: each tool must be a dict with a 'name' key, got {item}")
            else:
                if 'name' not in tool_data:
                    raise ValueError(f"Invalid tool format in {tool_name}: dict must have a 'name' key or 'tools' field, got {tool_data}")
        else:
            raise ValueError(f"Invalid tool file {tool_name}: must be a list or dict, got {type(tool_data)}")
    except Exception as e:
        logger.error(f"Error validating tool file {tool_name} ({tool_path}): {str(e)}")
        raise

def init_agent() -> TxAgent:
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    logger.info(f"Checking for tool file at: {tool_path}")
    
    # Create default tool file if it doesn't exist
    if not os.path.exists(tool_path):
        default_tool = {
            "name": "new_tool",
            "description": "Default tool configuration",
            "version": "1.0",
            "tools": [
                {"name": "dummy_tool", "description": "Dummy tool for testing", "version": "1.0"}
            ]
        }
        logger.info(f"Creating default tool file at: {tool_path}")
        with open(tool_path, 'w') as f:
            json.dump(default_tool, f)
    
    # Define tool files
    tool_files_dict = {
        'opentarget': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/opentarget_tools.json',
        'fda_drug_label': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/fda_drug_labeling_tools.json',
        'special_tools': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/special_tools.json',
        'monarch': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/monarch_tools.json',
        'new_tool': tool_path
    }
    
    # Validate all tool files
    for tool_name, tool_path in tool_files_dict.items():
        validate_tool_file(tool_name, tool_path)
    
    # Initialize TxAgent
    try:
        logger.info(f"Initializing TxAgent with tool_files_dict: {tool_files_dict}")
        agent = TxAgent(
            model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
            rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
            tool_files_dict=tool_files_dict,
            force_finish=True,
            enable_checker=True,
            step_rag_num=4,
            seed=100
        )
        logger.info("TxAgent initialized, calling init_model")
        agent.init_model()
        logger.info("TxAgent model initialized successfully")
        return agent
    except Exception as e:
        logger.error(f"Error initializing TxAgent: {str(e)}", exc_info=True)
        raise

def stream_report(agent: TxAgent, input_file: Union[str, Dict[str, Any]], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
    accumulated_text = ""
    try:
        if input_file is None:
            yield "โŒ Please upload a valid Excel file.", None, ""
            return

        try:
            text = extract_text_from_excel(input_file)
            chunks = split_text_into_chunks(text)
        except Exception as e:
            yield f"โŒ {str(e)}", None, ""
            return

        for i, chunk in enumerate(chunks):
            prompt = build_prompt_from_text(chunk)
            partial = ""
            for res in agent.run_gradio_chat(
                message=prompt, history=[], temperature=0.2,
                max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
                call_agent=False, conversation=[]
            ):
                partial += res if isinstance(res, str) else res.content
                
            cleaned = clean_response(partial)
            accumulated_text += f"\n\n๐Ÿ“„ Analysis Part {i+1}:\n{cleaned}"
            yield accumulated_text, None, ""

        summary_prompt = f"Please summarize this analysis:\n\n{accumulated_text}"
        final_report = ""
        for res in agent.run_gradio_chat(
            message=summary_prompt, history=[], temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
            call_agent=False, conversation=[]
        ):
            final_report += res if isinstance(res, str) else res.content

        cleaned = clean_response(final_report)
        report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
        with open(report_path, 'w') as f:
            f.write(f"# Clinical Analysis Report\n\n{cleaned}")

        yield f"{accumulated_text}\n\n๐Ÿ“Š Final Summary:\n{cleaned}", report_path, cleaned

    except Exception as e:
        logger.error(f"Processing error in stream_report: {str(e)}", exc_info=True)
        yield f"โŒ Processing error: {str(e)}", None, ""

def create_ui(agent: TxAgent) -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 900px !important}") as demo:
        gr.Markdown("""# Clinical Records Analyzer""")
        with gr.Row():
            file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
            analyze_btn = gr.Button("Analyze", variant="primary")
        
        with gr.Row():
            with gr.Column(scale=2):
                report_output = gr.Markdown()
            with gr.Column(scale=1):
                report_file = gr.File(label="Download Report", visible=False)
        
        full_output = gr.State()

        analyze_btn.click(
            fn=stream_report,
            inputs=[file_upload, full_output],
            outputs=[report_output, report_file, full_output]
        )

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        logger.info("Launching Gradio UI")
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            share=False
        )
    except Exception as e:
        logger.error(f"Application error: {str(e)}", exc_info=True)
        print(f"Application error: {str(e)}", file=sys.stderr)
        sys.exit(1)