File size: 11,082 Bytes
f75a23b f394b25 d184610 f394b25 3182c0a 1244d40 d16299c 1c5bd8e d16299c 4b4b32b d8282f1 f6e551c d16299c f6e551c 4bfbcac f75a23b d16299c 1244d40 dc9cc58 4b4b32b 04c881d dc9cc58 4b4b32b dc9cc58 4b4b32b f6e551c d16299c f6e551c d16299c f6e551c d16299c f6e551c 04c881d f6e551c ad85a12 f260d4a e41225f ad85a12 04c881d ad85a12 f260d4a 04c881d 4b4b32b f260d4a ad85a12 f260d4a ad85a12 f260d4a ad85a12 04c881d e41225f ad85a12 28e1ce8 ad85a12 e41225f ad85a12 f6e551c d16299c 04c881d f6e551c 6e39ead f6e551c 6e39ead f6e551c d16299c f6e551c d16299c 34915cc d16299c f6e551c d16299c 04c881d 4b4b32b 04c881d 4b4b32b 04c881d e41225f 04c881d 4b4b32b 04c881d 9a0b74b 04c881d 70f70c1 585f453 04c881d 4b4b32b 04c881d 70f70c1 04c881d 70f70c1 04c881d f260d4a 04c881d 585f453 04c881d 585f453 4b4b32b 04c881d e41225f 585f453 e41225f 585f453 e41225f 585f453 e41225f 585f453 e41225f 585f453 04c881d 585f453 04c881d 5b0bfb5 70f70c1 04c881d dc9cc58 04c881d 585f453 04c881d a71a831 55e3db0 f394b25 d8282f1 04c881d d16299c e41225f 04c881d 13ad0d3 d8282f1 1bdb280 e41225f dc9cc58 04c881d d8282f1 e41225f c7670bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple, Dict, Any, Union, Generator
import shutil
import re
from datetime import datetime
import time
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
MAX_NEW_TOKENS = 512 # Optimized for fast generation
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
MAX_CONCURRENT = 4 # Reduced concurrency to avoid vLLM issues
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
def clean_response(text: str) -> str:
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
return len(text) // 3.5 + 1 # Conservative estimate
def extract_text_from_excel(file_path: str) -> str:
all_text = []
try:
xls = pd.ExcelFile(file_path)
for sheet_name in xls.sheet_names:
df = xls.parse(sheet_name)
df = df.astype(str).fillna("")
rows = df.apply(lambda row: " | ".join(row), axis=1)
sheet_text = [f"[{sheet_name}] {line}" for line in rows]
all_text.extend(sheet_text)
except Exception as e:
logger.error(f"Error extracting Excel: {str(e)}")
raise ValueError(f"Failed to process Excel file: {str(e)}")
return "\n".join(all_text)
def split_text_into_chunks(text: str) -> List[str]:
"""Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD"""
effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
if effective_max <= 0:
raise ValueError("Effective max tokens must be positive")
lines = text.split("\n")
chunks = []
current_chunk = []
current_tokens = 0
for line in lines:
line_tokens = estimate_tokens(line)
if current_tokens + line_tokens > effective_max:
if current_chunk:
chunks.append("\n".join(current_chunk))
current_chunk = [line]
current_tokens = line_tokens
else:
current_chunk.append(line)
current_tokens += line_tokens
if current_chunk:
chunks.append("\n".join(current_chunk))
logger.info(f"Split text into {len(chunks)} chunks")
return chunks
def build_prompt_from_text(chunk: str) -> str:
return f"""
### Unstructured Clinical Records
You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.
**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.
Here is the extracted content chunk:
{chunk}
Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tokens):
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""
def init_agent():
"""Initialize TxAgent with conservative settings to avoid vLLM issues"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[]
)
agent.init_model()
return agent
def process_chunk_sync(agent, chunk: str, chunk_idx: int) -> Tuple[int, str]:
"""Synchronous wrapper for chunk processing"""
try:
prompt = build_prompt_from_text(chunk)
prompt_tokens = estimate_tokens(prompt)
if prompt_tokens > MAX_MODEL_TOKENS:
logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
return chunk_idx, ""
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
response += result
elif hasattr(result, "content"):
response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
response += r.content
return chunk_idx, clean_response(response)
except Exception as e:
logger.error(f"Error processing chunk {chunk_idx}: {str(e)}")
return chunk_idx, ""
async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
messages = []
report_path = None
if file_path is None:
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
yield messages, None
return
try:
# Initial messages
messages.append({"role": "user", "content": f"Processing file: {os.path.basename(file_path)}"})
messages.append({"role": "assistant", "content": "β³ Extracting data from Excel..."})
yield messages, None
# Extract and chunk text
start_time = time.time()
text = extract_text_from_excel(file_path)
chunks = split_text_into_chunks(text)
messages.append({"role": "assistant", "content": f"β
Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"})
yield messages, None
# Process chunks sequentially
chunk_responses = []
for idx, chunk in enumerate(chunks):
messages.append({"role": "assistant", "content": f"π Processing chunk {idx+1}/{len(chunks)}..."})
yield messages, None
_, response = await process_chunk(agent, chunk, idx)
chunk_responses.append(response)
messages.append({"role": "assistant", "content": f"β
Chunk {idx+1} processed"})
yield messages, None
# Combine and summarize
combined = "\n\n".join([r for r in chunk_responses if r])
messages.append({"role": "assistant", "content": "π Generating final report..."})
yield messages, None
final_response = ""
for result in agent.run_gradio_chat(
message=f"Summarize these clinical findings:\n\n{combined}",
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS*2,
max_token=MAX_MODEL_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, str):
final_response += result
elif hasattr(result, "content"):
final_response += result.content
elif isinstance(result, list):
for r in result:
if hasattr(r, "content"):
final_response += r.content
messages[-1]["content"] = f"π Generating final report...\n\n{clean_response(final_response)}"
yield messages, None
# Save report
final_report = f"# Final Clinical Report\n\n{clean_response(final_response)}"
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
with open(report_path, 'w') as f:
f.write(final_report)
messages.append({"role": "assistant", "content": f"β
Report saved: report_{timestamp}.md"})
yield messages, report_path
except Exception as e:
logger.error(f"Processing failed: {str(e)}")
messages.append({"role": "assistant", "content": f"β Error: {str(e)}"})
yield messages, None
def create_ui(agent: TxAgent):
"""Create the Gradio interface with simplified interaction"""
with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
gr.Markdown("## π₯ Clinical Data Analysis (TxAgent)")
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Analysis Progress",
show_copy_button=True,
height=600,
type="messages"
)
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Excel File",
file_types=[".xlsx"],
height=100
)
analyze_btn = gr.Button(
"π§ Analyze Data",
variant="primary"
)
report_output = gr.File(
label="Download Report",
visible=False
)
analyze_btn.click(
fn=lambda file: process_file(agent, file.name if file else None),
inputs=[file_input],
outputs=[chatbot, report_output],
concurrency_limit=1 # Ensure sequential processing
)
return demo
if __name__ == "__main__":
try:
# Initialize with conservative settings
agent = init_agent()
demo = create_ui(agent)
# Launch with stability optimizations
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False,
max_threads=4 # Reduced thread count for stability
)
except Exception as e:
logger.error(f"Application failed: {str(e)}")
sys.exit(1) |