File size: 11,082 Bytes
f75a23b
f394b25
d184610
f394b25
3182c0a
1244d40
d16299c
1c5bd8e
d16299c
4b4b32b
 
 
d8282f1
f6e551c
 
 
d16299c
f6e551c
 
 
 
 
 
 
 
4bfbcac
f75a23b
d16299c
 
 
1244d40
 
 
dc9cc58
4b4b32b
 
 
 
04c881d
dc9cc58
4b4b32b
dc9cc58
4b4b32b
f6e551c
d16299c
f6e551c
 
 
 
d16299c
 
f6e551c
d16299c
 
f6e551c
04c881d
f6e551c
ad85a12
 
f260d4a
 
 
 
 
 
 
 
 
e41225f
 
ad85a12
 
04c881d
 
 
 
 
 
ad85a12
 
 
 
 
 
f260d4a
04c881d
4b4b32b
f260d4a
ad85a12
f260d4a
ad85a12
 
f260d4a
ad85a12
 
 
04c881d
e41225f
ad85a12
 
 
 
 
28e1ce8
ad85a12
 
 
 
 
 
 
 
e41225f
ad85a12
 
 
 
 
 
f6e551c
d16299c
04c881d
f6e551c
 
6e39ead
f6e551c
 
6e39ead
f6e551c
d16299c
 
f6e551c
d16299c
 
 
 
34915cc
d16299c
f6e551c
 
d16299c
04c881d
 
4b4b32b
04c881d
 
 
 
 
 
 
 
4b4b32b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04c881d
 
e41225f
04c881d
 
4b4b32b
04c881d
 
9a0b74b
04c881d
70f70c1
 
 
 
 
585f453
04c881d
 
 
 
 
 
4b4b32b
04c881d
 
 
 
 
70f70c1
04c881d
 
 
 
 
70f70c1
04c881d
 
 
 
 
 
 
f260d4a
04c881d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585f453
 
 
 
 
04c881d
 
 
 
585f453
4b4b32b
04c881d
 
 
 
e41225f
 
585f453
 
 
 
e41225f
585f453
 
e41225f
585f453
 
e41225f
585f453
 
 
 
 
e41225f
585f453
 
 
 
04c881d
585f453
04c881d
5b0bfb5
70f70c1
04c881d
dc9cc58
04c881d
585f453
04c881d
a71a831
55e3db0
f394b25
d8282f1
04c881d
d16299c
e41225f
04c881d
 
13ad0d3
d8282f1
 
1bdb280
e41225f
dc9cc58
04c881d
d8282f1
 
e41225f
c7670bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import sys
import os
import pandas as pd
import gradio as gr
from typing import List, Tuple, Dict, Any, Union, Generator
import shutil
import re
from datetime import datetime
import time
import asyncio
import logging
from concurrent.futures import ThreadPoolExecutor, as_completed

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_MODEL_TOKENS = 131072  # TxAgent's max token limit
MAX_CHUNK_TOKENS = 32768   # Larger chunks to reduce number of chunks
MAX_NEW_TOKENS = 512       # Optimized for fast generation
PROMPT_OVERHEAD = 500      # Estimated tokens for prompt template
MAX_CONCURRENT = 4         # Reduced concurrency to avoid vLLM issues

# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1  # Conservative estimate

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    try:
        xls = pd.ExcelFile(file_path)
        for sheet_name in xls.sheet_names:
            df = xls.parse(sheet_name)
            df = df.astype(str).fillna("")
            rows = df.apply(lambda row: " | ".join(row), axis=1)
            sheet_text = [f"[{sheet_name}] {line}" for line in rows]
            all_text.extend(sheet_text)
    except Exception as e:
        logger.error(f"Error extracting Excel: {str(e)}")
        raise ValueError(f"Failed to process Excel file: {str(e)}")
    return "\n".join(all_text)

def split_text_into_chunks(text: str) -> List[str]:
    """Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD"""
    effective_max = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
    if effective_max <= 0:
        raise ValueError("Effective max tokens must be positive")
    
    lines = text.split("\n")
    chunks = []
    current_chunk = []
    current_tokens = 0

    for line in lines:
        line_tokens = estimate_tokens(line)
        if current_tokens + line_tokens > effective_max:
            if current_chunk:
                chunks.append("\n".join(current_chunk))
            current_chunk = [line]
            current_tokens = line_tokens
        else:
            current_chunk.append(line)
            current_tokens += line_tokens

    if current_chunk:
        chunks.append("\n".join(current_chunk))
    
    logger.info(f"Split text into {len(chunks)} chunks")
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

You are reviewing unstructured, mixed-format clinical documentation from various forms, tables, and sheets.

**Objective:** Identify patterns, missed diagnoses, inconsistencies, and follow-up gaps.

Here is the extracted content chunk:

{chunk}

Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tokens):
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations
"""

def init_agent():
    """Initialize TxAgent with conservative settings to avoid vLLM issues"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")

    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)

    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[]
    )
    agent.init_model()
    return agent

def process_chunk_sync(agent, chunk: str, chunk_idx: int) -> Tuple[int, str]:
    """Synchronous wrapper for chunk processing"""
    try:
        prompt = build_prompt_from_text(chunk)
        prompt_tokens = estimate_tokens(prompt)
        
        if prompt_tokens > MAX_MODEL_TOKENS:
            logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
            return chunk_idx, ""
        
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_MODEL_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, str):
                response += result
            elif hasattr(result, "content"):
                response += result.content
            elif isinstance(result, list):
                for r in result:
                    if hasattr(r, "content"):
                        response += r.content
        
        return chunk_idx, clean_response(response)
    except Exception as e:
        logger.error(f"Error processing chunk {chunk_idx}: {str(e)}")
        return chunk_idx, ""

async def process_file(agent: TxAgent, file_path: str) -> Generator[Tuple[List[Dict[str, str]], Union[str, None]], None, None]:
    messages = []
    report_path = None
    
    if file_path is None:
        messages.append({"role": "assistant", "content": "❌ Please upload a valid Excel file before analyzing."})
        yield messages, None
        return

    try:
        # Initial messages
        messages.append({"role": "user", "content": f"Processing file: {os.path.basename(file_path)}"})
        messages.append({"role": "assistant", "content": "⏳ Extracting data from Excel..."})
        yield messages, None
        
        # Extract and chunk text
        start_time = time.time()
        text = extract_text_from_excel(file_path)
        chunks = split_text_into_chunks(text)
        messages.append({"role": "assistant", "content": f"βœ… Extracted {len(chunks)} chunks in {time.time()-start_time:.1f}s"})
        yield messages, None
        
        # Process chunks sequentially
        chunk_responses = []
        for idx, chunk in enumerate(chunks):
            messages.append({"role": "assistant", "content": f"πŸ” Processing chunk {idx+1}/{len(chunks)}..."})
            yield messages, None
            
            _, response = await process_chunk(agent, chunk, idx)
            chunk_responses.append(response)
            
            messages.append({"role": "assistant", "content": f"βœ… Chunk {idx+1} processed"})
            yield messages, None
        
        # Combine and summarize
        combined = "\n\n".join([r for r in chunk_responses if r])
        messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})
        yield messages, None
        
        final_response = ""
        for result in agent.run_gradio_chat(
            message=f"Summarize these clinical findings:\n\n{combined}",
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS*2,
            max_token=MAX_MODEL_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, str):
                final_response += result
            elif hasattr(result, "content"):
                final_response += result.content
            elif isinstance(result, list):
                for r in result:
                    if hasattr(r, "content"):
                        final_response += r.content
            
            messages[-1]["content"] = f"πŸ“Š Generating final report...\n\n{clean_response(final_response)}"
            yield messages, None
        
        # Save report
        final_report = f"# Final Clinical Report\n\n{clean_response(final_response)}"
        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        report_path = os.path.join(report_dir, f"report_{timestamp}.md")
        
        with open(report_path, 'w') as f:
            f.write(final_report)
        
        messages.append({"role": "assistant", "content": f"βœ… Report saved: report_{timestamp}.md"})
        yield messages, report_path
    
    except Exception as e:
        logger.error(f"Processing failed: {str(e)}")
        messages.append({"role": "assistant", "content": f"❌ Error: {str(e)}"})
        yield messages, None
def create_ui(agent: TxAgent):
    """Create the Gradio interface with simplified interaction"""
    with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
        gr.Markdown("## πŸ₯ Clinical Data Analysis (TxAgent)")
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Analysis Progress",
                    show_copy_button=True,
                    height=600,
                    type="messages"
                )
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload Excel File",
                    file_types=[".xlsx"],
                    height=100
                )
                analyze_btn = gr.Button(
                    "🧠 Analyze Data",
                    variant="primary"
                )
                report_output = gr.File(
                    label="Download Report",
                    visible=False
                )
        
        analyze_btn.click(
            fn=lambda file: process_file(agent, file.name if file else None),
            inputs=[file_input],
            outputs=[chatbot, report_output],
            concurrency_limit=1  # Ensure sequential processing
        )
    
    return demo

if __name__ == "__main__":
    try:
        # Initialize with conservative settings
        agent = init_agent()
        demo = create_ui(agent)
        
        # Launch with stability optimizations
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False,
            max_threads=4  # Reduced thread count for stability
        )
    except Exception as e:
        logger.error(f"Application failed: {str(e)}")
        sys.exit(1)