Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,12 @@ import sys
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
-
from typing import List, Tuple, Dict, Any, Union
|
6 |
import shutil
|
7 |
import re
|
8 |
from datetime import datetime
|
9 |
import time
|
|
|
10 |
import asyncio
|
11 |
import logging
|
12 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
@@ -23,7 +24,7 @@ report_dir = os.path.join(persistent_dir, "reports")
|
|
23 |
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
24 |
os.makedirs(directory, exist_ok=True)
|
25 |
|
26 |
-
os.environ["HF_HOME"] = model_cache_dir # Using HF_HOME
|
27 |
|
28 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
29 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
@@ -31,15 +32,22 @@ sys.path.insert(0, src_path)
|
|
31 |
|
32 |
from txagent.txagent import TxAgent
|
33 |
|
34 |
-
#
|
35 |
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
|
36 |
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
|
37 |
MAX_NEW_TOKENS = 512 # Optimized for fast generation
|
38 |
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
|
39 |
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Setup logging
|
42 |
-
logging.basicConfig(level=logging.INFO, format=
|
43 |
logger = logging.getLogger(__name__)
|
44 |
|
45 |
def clean_response(text: str) -> str:
|
@@ -53,9 +61,13 @@ def clean_response(text: str) -> str:
|
|
53 |
return text.strip()
|
54 |
|
55 |
def estimate_tokens(text: str) -> int:
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
def extract_text_from_excel(file_path: str) -> str:
|
|
|
59 |
all_text = []
|
60 |
try:
|
61 |
xls = pd.ExcelFile(file_path)
|
@@ -70,12 +82,12 @@ def extract_text_from_excel(file_path: str) -> str:
|
|
70 |
raise ValueError(f"Failed to process Excel file: {str(e)}")
|
71 |
return "\n".join(all_text)
|
72 |
|
73 |
-
def split_text_into_chunks(text: str) -> List[str]:
|
74 |
-
"""Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD"""
|
75 |
-
|
76 |
-
if
|
77 |
-
raise ValueError("Effective max tokens must be positive")
|
78 |
-
|
79 |
lines = text.split("\n")
|
80 |
chunks = []
|
81 |
current_chunk = []
|
@@ -83,7 +95,7 @@ def split_text_into_chunks(text: str) -> List[str]:
|
|
83 |
|
84 |
for line in lines:
|
85 |
line_tokens = estimate_tokens(line)
|
86 |
-
if current_tokens + line_tokens >
|
87 |
if current_chunk:
|
88 |
chunks.append("\n".join(current_chunk))
|
89 |
current_chunk = [line]
|
@@ -94,11 +106,12 @@ def split_text_into_chunks(text: str) -> List[str]:
|
|
94 |
|
95 |
if current_chunk:
|
96 |
chunks.append("\n".join(current_chunk))
|
97 |
-
|
98 |
logger.info(f"Split text into {len(chunks)} chunks")
|
99 |
return chunks
|
100 |
|
101 |
def build_prompt_from_text(chunk: str) -> str:
|
|
|
102 |
return f"""
|
103 |
### Unstructured Clinical Records
|
104 |
|
@@ -119,6 +132,7 @@ Please analyze the above and provide concise responses (max {MAX_NEW_TOKENS} tok
|
|
119 |
"""
|
120 |
|
121 |
def init_agent():
|
|
|
122 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
123 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
124 |
|
@@ -138,17 +152,19 @@ def init_agent():
|
|
138 |
agent.init_model()
|
139 |
return agent
|
140 |
|
141 |
-
async def process_chunk(agent
|
142 |
-
"""Process a single chunk
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
try:
|
144 |
-
prompt = build_prompt_from_text(chunk)
|
145 |
-
prompt_tokens = estimate_tokens(prompt)
|
146 |
-
|
147 |
-
if prompt_tokens > MAX_MODEL_TOKENS:
|
148 |
-
logger.warning(f"Chunk {chunk_idx} prompt too long ({prompt_tokens} tokens)")
|
149 |
-
return chunk_idx, ""
|
150 |
-
|
151 |
-
response = ""
|
152 |
for result in agent.run_gradio_chat(
|
153 |
message=prompt,
|
154 |
history=[],
|
@@ -166,95 +182,143 @@ async def process_chunk(agent: TxAgent, chunk: str, chunk_idx: int) -> Tuple[int
|
|
166 |
for r in result:
|
167 |
if hasattr(r, "content"):
|
168 |
response += r.content
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
except Exception as e:
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
175 |
|
176 |
-
async def
|
177 |
-
"""Process the
|
178 |
-
messages = []
|
179 |
report_path = None
|
180 |
-
|
|
|
|
|
|
|
|
|
181 |
try:
|
182 |
-
|
183 |
-
messages.append({"role": "
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
# Extract and chunk text
|
188 |
start_time = time.time()
|
189 |
-
|
190 |
-
chunks = split_text_into_chunks(
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
# Process chunks in parallel
|
195 |
chunk_responses = [None] * len(chunks)
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
messages
|
238 |
-
|
239 |
-
|
240 |
-
#
|
241 |
-
|
|
|
|
|
242 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
243 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
244 |
|
245 |
with open(report_path, 'w') as f:
|
246 |
f.write(final_report)
|
247 |
-
|
248 |
-
messages.append({"role": "assistant", "content": f"β
Report saved: report_{timestamp}.md"})
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
except Exception as e:
|
|
|
252 |
logger.error(f"Processing failed: {str(e)}")
|
253 |
-
messages
|
254 |
-
yield messages, None
|
255 |
|
256 |
-
def create_ui(agent
|
257 |
-
"""Create the Gradio interface"""
|
258 |
with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
|
259 |
gr.Markdown("## π₯ Clinical Data Analysis (TxAgent)")
|
260 |
|
@@ -278,15 +342,29 @@ def create_ui(agent: TxAgent):
|
|
278 |
)
|
279 |
report_output = gr.File(
|
280 |
label="Download Report",
|
281 |
-
visible=False
|
|
|
282 |
)
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
analyze_btn.click(
|
285 |
-
fn=
|
286 |
-
inputs=[file_input],
|
287 |
-
outputs=[chatbot, report_output]
|
|
|
288 |
)
|
289 |
-
|
290 |
return demo
|
291 |
|
292 |
if __name__ == "__main__":
|
@@ -298,7 +376,9 @@ if __name__ == "__main__":
|
|
298 |
server_port=7860,
|
299 |
show_error=True,
|
300 |
allowed_paths=[report_dir],
|
301 |
-
share=False
|
|
|
|
|
302 |
)
|
303 |
except Exception as e:
|
304 |
logger.error(f"Application failed: {str(e)}")
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
import gradio as gr
|
5 |
+
from typing import List, Tuple, Dict, Any, Union
|
6 |
import shutil
|
7 |
import re
|
8 |
from datetime import datetime
|
9 |
import time
|
10 |
+
from transformers import AutoTokenizer
|
11 |
import asyncio
|
12 |
import logging
|
13 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
|
24 |
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
|
25 |
os.makedirs(directory, exist_ok=True)
|
26 |
|
27 |
+
os.environ["HF_HOME"] = model_cache_dir # Using HF_HOME as specified
|
28 |
|
29 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
30 |
src_path = os.path.abspath(os.path.join(current_dir, "src"))
|
|
|
32 |
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
+
# Constants
|
36 |
MAX_MODEL_TOKENS = 131072 # TxAgent's max token limit
|
37 |
MAX_CHUNK_TOKENS = 32768 # Larger chunks to reduce number of chunks
|
38 |
MAX_NEW_TOKENS = 512 # Optimized for fast generation
|
39 |
PROMPT_OVERHEAD = 500 # Estimated tokens for prompt template
|
40 |
MAX_CONCURRENT = 8 # High concurrency for A100 80GB
|
41 |
|
42 |
+
# Initialize tokenizer for precise token counting
|
43 |
+
try:
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained("mims-harvard/TxAgent-T1-Llama-3.1-8B")
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Warning: Could not load tokenizer, falling back to heuristic: {str(e)}")
|
47 |
+
tokenizer = None
|
48 |
+
|
49 |
# Setup logging
|
50 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
51 |
logger = logging.getLogger(__name__)
|
52 |
|
53 |
def clean_response(text: str) -> str:
|
|
|
61 |
return text.strip()
|
62 |
|
63 |
def estimate_tokens(text: str) -> int:
|
64 |
+
"""Estimate tokens using tokenizer if available, else fall back to heuristic."""
|
65 |
+
if tokenizer:
|
66 |
+
return len(tokenizer.encode(text, add_special_tokens=False))
|
67 |
+
return len(text) // 3.5 + 1 # Consistent with your heuristic
|
68 |
|
69 |
def extract_text_from_excel(file_path: str) -> str:
|
70 |
+
"""Extract text from all sheets in an Excel file."""
|
71 |
all_text = []
|
72 |
try:
|
73 |
xls = pd.ExcelFile(file_path)
|
|
|
82 |
raise ValueError(f"Failed to process Excel file: {str(e)}")
|
83 |
return "\n".join(all_text)
|
84 |
|
85 |
+
def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
|
86 |
+
"""Split text into chunks respecting MAX_CHUNK_TOKENS and PROMPT_OVERHEAD."""
|
87 |
+
effective_max_tokens = max_tokens - PROMPT_OVERHEAD
|
88 |
+
if effective_max_tokens <= 0:
|
89 |
+
raise ValueError(f"Effective max tokens ({effective_max_tokens}) must be positive.")
|
90 |
+
|
91 |
lines = text.split("\n")
|
92 |
chunks = []
|
93 |
current_chunk = []
|
|
|
95 |
|
96 |
for line in lines:
|
97 |
line_tokens = estimate_tokens(line)
|
98 |
+
if current_tokens + line_tokens > effective_max_tokens:
|
99 |
if current_chunk:
|
100 |
chunks.append("\n".join(current_chunk))
|
101 |
current_chunk = [line]
|
|
|
106 |
|
107 |
if current_chunk:
|
108 |
chunks.append("\n".join(current_chunk))
|
109 |
+
|
110 |
logger.info(f"Split text into {len(chunks)} chunks")
|
111 |
return chunks
|
112 |
|
113 |
def build_prompt_from_text(chunk: str) -> str:
|
114 |
+
"""Build a prompt for analyzing a chunk of clinical data."""
|
115 |
return f"""
|
116 |
### Unstructured Clinical Records
|
117 |
|
|
|
132 |
"""
|
133 |
|
134 |
def init_agent():
|
135 |
+
"""Initialize the TxAgent with optimized vLLM settings for A100 80GB."""
|
136 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
137 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
138 |
|
|
|
152 |
agent.init_model()
|
153 |
return agent
|
154 |
|
155 |
+
async def process_chunk(agent, chunk: str, chunk_index: int, total_chunks: int) -> Tuple[int, str, str]:
|
156 |
+
"""Process a single chunk and return index, response, and status message."""
|
157 |
+
logger.info(f"Processing chunk {chunk_index+1}/{total_chunks}")
|
158 |
+
prompt = build_prompt_from_text(chunk)
|
159 |
+
prompt_tokens = estimate_tokens(prompt)
|
160 |
+
|
161 |
+
if prompt_tokens > MAX_MODEL_TOKENS:
|
162 |
+
error_msg = f"β Chunk {chunk_index+1} prompt too long ({prompt_tokens} tokens). Skipping..."
|
163 |
+
logger.warning(error_msg)
|
164 |
+
return chunk_index, "", error_msg
|
165 |
+
|
166 |
+
response = ""
|
167 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
for result in agent.run_gradio_chat(
|
169 |
message=prompt,
|
170 |
history=[],
|
|
|
182 |
for r in result:
|
183 |
if hasattr(r, "content"):
|
184 |
response += r.content
|
185 |
+
status = f"β
Chunk {chunk_index+1} analysis complete"
|
186 |
+
logger.info(status)
|
|
|
187 |
except Exception as e:
|
188 |
+
status = f"β Error analyzing chunk {chunk_index+1}: {str(e)}"
|
189 |
+
logger.error(status)
|
190 |
+
response = ""
|
191 |
+
|
192 |
+
return chunk_index, clean_response(response), status
|
193 |
|
194 |
+
async def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
|
195 |
+
"""Process the Excel file and generate a final report."""
|
196 |
+
messages = chatbot_state if chatbot_state else []
|
197 |
report_path = None
|
198 |
+
|
199 |
+
if file is None or not hasattr(file, "name"):
|
200 |
+
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
201 |
+
return messages, report_path
|
202 |
+
|
203 |
try:
|
204 |
+
messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
|
205 |
+
messages.append({"role": "assistant", "content": "β³ Extracting and analyzing data..."})
|
206 |
+
|
207 |
+
# Extract text and split into chunks
|
|
|
|
|
208 |
start_time = time.time()
|
209 |
+
extracted_text = extract_text_from_excel(file.name)
|
210 |
+
chunks = split_text_into_chunks(extracted_text, max_tokens=MAX_CHUNK_TOKENS)
|
211 |
+
logger.info(f"Extracted text and split into {len(chunks)} chunks in {time.time() - start_time:.2f} seconds")
|
212 |
+
|
|
|
|
|
213 |
chunk_responses = [None] * len(chunks)
|
214 |
+
batch_size = MAX_CONCURRENT
|
215 |
+
|
216 |
+
# Process chunks in batches
|
217 |
+
for batch_start in range(0, len(chunks), batch_size):
|
218 |
+
batch_chunks = chunks[batch_start:batch_start + batch_size]
|
219 |
+
batch_indices = list(range(batch_start, min(batch_start + batch_size, len(chunks))))
|
220 |
+
logger.info(f"Processing batch {batch_start//batch_size + 1}/{(len(chunks) + batch_size - 1)//batch_size}")
|
221 |
+
|
222 |
+
with ThreadPoolExecutor(max_workers=MAX_CONCURRENT) as executor:
|
223 |
+
futures = [
|
224 |
+
executor.submit(lambda c, i: asyncio.run(process_chunk(agent, c, i, len(chunks))), chunk, i)
|
225 |
+
for i, chunk in zip(batch_indices, batch_chunks)
|
226 |
+
]
|
227 |
+
for future in as_completed(futures):
|
228 |
+
chunk_index, response, status = future.result()
|
229 |
+
chunk_responses[chunk_index] = response
|
230 |
+
messages.append({"role": "assistant", "content": status})
|
231 |
+
|
232 |
+
# Filter out empty responses
|
233 |
+
chunk_responses = [r for r in chunk_responses if r]
|
234 |
+
if not chunk_responses:
|
235 |
+
messages.append({"role": "assistant", "content": "β No valid chunk responses to summarize."})
|
236 |
+
return messages, report_path
|
237 |
+
|
238 |
+
# Summarize chunk responses incrementally
|
239 |
+
summary = ""
|
240 |
+
current_summary_tokens = 0
|
241 |
+
for i, response in enumerate(chunk_responses):
|
242 |
+
response_tokens = estimate_tokens(response)
|
243 |
+
if current_summary_tokens + response_tokens > MAX_MODEL_TOKENS - PROMPT_OVERHEAD - MAX_NEW_TOKENS:
|
244 |
+
summary_prompt = f"Summarize the following analysis:\n\n{summary}\n\nProvide a concise summary."
|
245 |
+
summary_response = ""
|
246 |
+
try:
|
247 |
+
for result in agent.run_gradio_chat(
|
248 |
+
message=summary_prompt,
|
249 |
+
history=[],
|
250 |
+
temperature=0.2,
|
251 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
252 |
+
max_token=MAX_MODEL_TOKENS,
|
253 |
+
call_agent=False,
|
254 |
+
conversation=[],
|
255 |
+
):
|
256 |
+
if isinstance(result, str):
|
257 |
+
summary_response += result
|
258 |
+
elif hasattr(result, "content"):
|
259 |
+
summary_response += result.content
|
260 |
+
elif isinstance(result, list):
|
261 |
+
for r in result:
|
262 |
+
if hasattr(r, "content"):
|
263 |
+
summary_response += r.content
|
264 |
+
summary = clean_response(summary_response)
|
265 |
+
current_summary_tokens = estimate_tokens(summary)
|
266 |
+
except Exception as e:
|
267 |
+
messages.append({"role": "assistant", "content": f"β Error summarizing intermediate results: {str(e)}"})
|
268 |
+
return messages, report_path
|
269 |
+
|
270 |
+
summary += f"\n\n### Chunk {i+1} Analysis\n{response}"
|
271 |
+
current_summary_tokens += response_tokens
|
272 |
+
|
273 |
+
# Final summarization
|
274 |
+
final_prompt = f"Summarize the key findings from the following analyses:\n\n{summary}"
|
275 |
messages.append({"role": "assistant", "content": "π Generating final report..."})
|
276 |
+
|
277 |
+
final_report_text = ""
|
278 |
+
try:
|
279 |
+
for result in agent.run_gradio_chat(
|
280 |
+
message=final_prompt,
|
281 |
+
history=[],
|
282 |
+
temperature=0.2,
|
283 |
+
max_new_tokens=MAX_NEW_TOKENS * 2, # Allow more tokens for summary, as in your code
|
284 |
+
max_token=MAX_MODEL_TOKENS,
|
285 |
+
call_agent=False,
|
286 |
+
conversation=[],
|
287 |
+
):
|
288 |
+
if isinstance(result, str):
|
289 |
+
final_report_text += result
|
290 |
+
elif hasattr(result, "content"):
|
291 |
+
final_report_text += result.content
|
292 |
+
elif isinstance(result, list):
|
293 |
+
for r in result:
|
294 |
+
if hasattr(r, "content"):
|
295 |
+
final_report_text += r.content
|
296 |
+
except Exception as e:
|
297 |
+
messages.append({"role": "assistant", "content": f"β Error generating final report: {str(e)}"})
|
298 |
+
return messages, report_path
|
299 |
+
|
300 |
+
final_report = f"# Final Clinical Report\n\n{clean_response(final_report_text)}"
|
301 |
+
messages[-1]["content"] = f"π Final Report:\n\n{clean_response(final_report_text)}"
|
302 |
+
|
303 |
+
# Save the report
|
304 |
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
305 |
report_path = os.path.join(report_dir, f"report_{timestamp}.md")
|
306 |
|
307 |
with open(report_path, 'w') as f:
|
308 |
f.write(final_report)
|
309 |
+
|
310 |
+
messages.append({"role": "assistant", "content": f"β
Report generated and saved: report_{timestamp}.md"})
|
311 |
+
logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds")
|
312 |
+
|
313 |
+
return messages, report_path
|
314 |
+
|
315 |
except Exception as e:
|
316 |
+
messages.append({"role": "assistant", "content": f"β Error processing file: {str(e)}"})
|
317 |
logger.error(f"Processing failed: {str(e)}")
|
318 |
+
return messages, report_path
|
|
|
319 |
|
320 |
+
def create_ui(agent):
|
321 |
+
"""Create the Gradio interface."""
|
322 |
with gr.Blocks(title="Clinical Analysis", css=".gradio-container {max-width: 900px}") as demo:
|
323 |
gr.Markdown("## π₯ Clinical Data Analysis (TxAgent)")
|
324 |
|
|
|
342 |
)
|
343 |
report_output = gr.File(
|
344 |
label="Download Report",
|
345 |
+
visible=False,
|
346 |
+
interactive=False
|
347 |
)
|
348 |
+
|
349 |
+
# State to maintain chatbot messages
|
350 |
+
chatbot_state = gr.State(value=[])
|
351 |
+
|
352 |
+
async def update_ui(file, current_state):
|
353 |
+
if file is None or not hasattr(file, "name"):
|
354 |
+
messages = current_state if current_state else []
|
355 |
+
messages.append({"role": "assistant", "content": "β Please upload a valid Excel file before analyzing."})
|
356 |
+
return messages, None
|
357 |
+
messages, report_path = await process_final_report(agent, file, current_state)
|
358 |
+
report_update = gr.update(visible=report_path is not None, value=report_path)
|
359 |
+
return messages, report_update
|
360 |
+
|
361 |
analyze_btn.click(
|
362 |
+
fn=update_ui,
|
363 |
+
inputs=[file_input, chatbot_state],
|
364 |
+
outputs=[chatbot, report_output],
|
365 |
+
api_name="analyze"
|
366 |
)
|
367 |
+
|
368 |
return demo
|
369 |
|
370 |
if __name__ == "__main__":
|
|
|
376 |
server_port=7860,
|
377 |
show_error=True,
|
378 |
allowed_paths=[report_dir],
|
379 |
+
share=False,
|
380 |
+
inline=False,
|
381 |
+
max_threads=40
|
382 |
)
|
383 |
except Exception as e:
|
384 |
logger.error(f"Application failed: {str(e)}")
|