File size: 5,037 Bytes
1777737
3a20a5b
728def5
 
3a20a5b
dfe34bb
3a20a5b
dfe34bb
0e7a2f6
dfe34bb
728def5
3a20a5b
dfe34bb
3a20a5b
 
 
 
 
 
 
 
dfe34bb
 
3a20a5b
dfe34bb
728def5
3a20a5b
dfe34bb
 
 
3a20a5b
 
dfe34bb
 
 
 
 
3a20a5b
 
dfe34bb
 
 
 
728def5
dfe34bb
3492c23
3ae42d2
 
3a20a5b
 
 
 
 
 
 
 
774fd26
3492c23
3a20a5b
dfe34bb
3ae42d2
 
 
 
dfe34bb
4a6ed35
3a20a5b
dfe34bb
3a20a5b
 
 
dfe34bb
3a20a5b
 
dfe34bb
3a20a5b
0e7a2f6
 
3a20a5b
 
0e7a2f6
3ae42d2
4a6ed35
3492c23
 
 
 
 
 
 
 
3a20a5b
3492c23
 
 
88317c7
 
3a20a5b
 
 
88317c7
3a20a5b
3ae42d2
 
 
3a20a5b
3492c23
0e7a2f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr

# ✅ Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent


def extract_all_text_from_csv_or_excel(file_path, progress=None, index=0, total=1):
    try:
        if file_path.endswith(".csv"):
            df = pd.read_csv(file_path, low_memory=False)
        elif file_path.endswith((".xls", ".xlsx")):
            df = pd.read_excel(file_path)
        else:
            return f"Unsupported spreadsheet format: {file_path}"
        if progress:
            progress((index + 1) / total, desc=f"Processed table: {os.path.basename(file_path)}")
        return df.to_string(index=False)
    except Exception as e:
        return f"Error parsing file: {e}"


def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1):
    extracted = []
    try:
        with pdfplumber.open(file_path) as pdf:
            num_pages = len(pdf.pages)
            for i, page in enumerate(pdf.pages):
                tables = page.extract_tables()
                for table in tables:
                    for row in table:
                        if any(row):
                            extracted.append("\t".join([cell or "" for cell in row]))
                if progress:
                    progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
        return "\n".join(extracted)
    except Exception as e:
        return f"Error parsing PDF: {e}"


def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
        chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")

        file_upload = gr.File(
            label="Upload Medical File",
            file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
            file_count="multiple"
        )
        message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
        send_button = gr.Button("Send", variant="primary")
        conversation_state = gr.State([])

        def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()):
            context = (
                "You are an advanced clinical reasoning AI. You have just received raw medical data extracted from patient forms, lab reports, or interview tables. "
                "Your goal is to analyze this data like a clinical expert. Go step by step to detect patterns, spot unusual or missing info, and identify clinical red flags "
                "or overlooked findings. Use medically grounded reasoning. Be detailed. At the end, explain what the doctor may have missed and why it matters. "
                "Include examples, reference clinical logic, and suggest what should have been asked or done. This response will help improve real-world diagnostics."
            )

            if uploaded_files:
                extracted_text = ""
                total_files = len(uploaded_files)

                for index, file in enumerate(uploaded_files):
                    path = file.name
                    if path.endswith((".csv", ".xls", ".xlsx")):
                        extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
                    elif path.endswith(".pdf"):
                        extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
                    else:
                        extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
                        if progress:
                            progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}")

                message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nBegin your reasoning."

            generator = agent.run_gradio_chat(
                message=message,
                history=history,
                temperature=0.3,
                max_new_tokens=1024,
                max_token=8192,
                call_agent=False,
                conversation=conversation,
                uploaded_files=uploaded_files,
                max_round=30
            )
            for update in generator:
                yield update

        inputs = [message_input, chatbot, conversation_state, file_upload]
        send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
        message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)

        gr.Examples([
            ["Upload your medical form and ask what the doctor might’ve missed."],
            ["This patient was treated with antibiotics for UTI. What else should we check?"],
            ["Is there anything abnormal in the attached blood work report?"]
        ], inputs=message_input)

    return demo