File size: 14,853 Bytes
f75a23b f394b25 d184610 d16299c f394b25 d16299c a7e68bf 1244d40 d16299c 1c5bd8e d16299c d184610 d8282f1 d16299c f75a23b d16299c 1244d40 4ba3497 f75a23b d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c a7e68bf d16299c a7e68bf 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 1c5bd8e 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c d184610 d16299c 4ba3497 d16299c d8282f1 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d8282f1 4ba3497 d8282f1 d16299c a7e68bf d16299c d8282f1 4ba3497 d16299c 4ba3497 d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 4ba3497 d8282f1 4ba3497 d184610 4ba3497 d16299c 4ba3497 a7e68bf d8282f1 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d16299c 4ba3497 d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 d16299c d8282f1 cbf903d d16299c d8282f1 d16299c d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants - Updated for 32,768 token limit
MAX_TOKENS = 32768
CHUNK_SIZE = 10000 # Target chunk size (allowing 3 chunks within limit)
MAX_NEW_TOKENS = 2048 # Increased output length
MAX_BOOKINGS_PER_CHUNK = 5 # Process 5 bookings per chunk
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""More accurate token estimation (1 token ~ 3-4 characters)"""
return len(text) // 3.5 # More conservative estimate
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Enhanced patient data processing with chronology"""
data = {
'bookings': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'procedures': defaultdict(list),
'doctors': set(),
'timeline': []
}
# Sort by date and group by booking
df = df.sort_values('Interview Date')
for booking, group in df.groupby('Booking Number'):
for _, row in group.iterrows():
entry = {
'booking': booking,
'date': str(row['Interview Date']),
'doctor': str(row['Interviewer']),
'form': str(row['Form Name']),
'item': str(row['Form Item']),
'response': str(row['Item Response']),
'notes': str(row['Description'])
}
data['bookings'][booking].append(entry)
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
# Enhanced categorization
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower or 'condition' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
data['tests'][entry['item']].append(entry)
elif 'procedure' in form_lower or 'surgery' in form_lower:
data['procedures'][entry['item']].append(entry)
return data
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
"""Generate comprehensive prompt for multiple bookings"""
prompt_lines = [
"**Comprehensive Patient Analysis**",
f"Analyzing {len(bookings)} bookings spanning {patient_data['timeline'][0]['date']} to {patient_data['timeline'][-1]['date']}",
"Focus on identifying patterns, inconsistencies, and missed opportunities across the entire treatment history.",
"",
"**Key Analysis Points:**",
"- Chronological progression of symptoms and diagnoses",
"- Medication changes and potential interactions over time",
"- Diagnostic consistency across different providers",
"- Missed diagnostic opportunities based on symptoms and test results",
"- Gaps in follow-up or incomplete assessments",
"- Emerging patterns that may indicate chronic conditions",
"",
"**Patient Timeline (Condensed):**"
]
# Add condensed timeline
for entry in patient_data['timeline']:
if entry['booking'] in bookings:
prompt_lines.append(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
)
# Add current medications
prompt_lines.extend([
"",
"**Medication History:**",
*[f"- {med}: " + " → ".join(
f"{e['date']}: {e['response']}"
for e in entries if e['booking'] in bookings
) for med, entries in patient_data['medications'].items()],
"",
"**Diagnostic History:**",
*[f"- {diag}: " + " → ".join(
f"{e['date']}: {e['response']}"
for e in entries if e['booking'] in bookings
) for diag, entries in patient_data['diagnoses'].items()],
"",
"**Required Analysis Format:**",
"### Diagnostic Patterns",
"[Identify patterns in symptoms and diagnoses over time]",
"",
"### Medication Analysis",
"[Review all medication changes and potential issues]",
"",
"### Provider Consistency",
"[Note any discrepancies between different doctors]",
"",
"### Missed Opportunities",
"[Potential diagnoses or interventions that were missed]",
"",
"### Comprehensive Recommendations",
"[Actionable recommendations for current care]"
])
return "\n".join(prompt_lines)
def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]:
"""Split bookings into 3 balanced chunks based on token count"""
all_bookings = list(patient_data['bookings'].keys())
# Estimate token count for each booking
booking_sizes = []
for booking in all_bookings:
entries = patient_data['bookings'][booking]
size = sum(estimate_tokens(str(e)) for e in entries)
booking_sizes.append((booking, size))
# Sort by size (descending) for better chunk balancing
booking_sizes.sort(key=lambda x: x[1], reverse=True)
# Initialize 3 chunks
chunks = [[] for _ in range(3)]
chunk_sizes = [0, 0, 0]
# Distribute bookings to chunks
for booking, size in booking_sizes:
# Find the chunk with smallest current size
min_chunk = chunk_sizes.index(min(chunk_sizes))
chunks[min_chunk].append(booking)
chunk_sizes[min_chunk] += size
return chunks
def init_agent():
"""Initialize TxAgent with enhanced configuration"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
device_map="auto"
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
"""Enhanced analysis with progress tracking"""
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analyzer")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Patient Excel File",
file_types=[".xlsx"],
file_count="single"
)
analysis_btn = gr.Button("Analyze Full History", variant="primary")
status = gr.Markdown("Ready for analysis")
progress = gr.Slider(
minimum=0,
maximum=100,
value=0,
label="Analysis Progress",
interactive=False
)
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## Enhanced Patient History Analysis
This tool processes complete medical histories across multiple visits, identifying:
- Patterns in symptoms and diagnoses over time
- Medication safety issues across providers
- Missed diagnostic opportunities
- Gaps in follow-up care
**How to Use:**
1. Upload Excel file with patient history
2. Click "Analyze Full History"
3. View progressive results
4. Download comprehensive report
**File Requirements:**
- Must contain complete visit history
- Required columns: Booking Number, Interview Date, Interviewer,
Form Name, Form Item, Item Response, Description
""")
def analyze_patient(file) -> Tuple[str, str, int]:
if not file:
raise gr.Error("Please upload an Excel file first")
full_report = []
report_path = ""
try:
# Process Excel file
df = pd.read_excel(file.name)
patient_data = process_patient_data(df)
# Split into 3 balanced chunks
booking_chunks = chunk_bookings(patient_data)
total_chunks = len(booking_chunks)
for chunk_idx, bookings in enumerate(booking_chunks, 1):
# Update progress
progress_value = int((chunk_idx/total_chunks)*100)
yield "", "", progress_value
# Generate and process prompt
prompt = generate_analysis_prompt(patient_data, bookings)
response = analyze_with_agent(agent, prompt)
if "Error in analysis" not in response:
full_report.append(
f"## Analysis Segment {chunk_idx} (Bookings: {', '.join(bookings)})\n{response}\n"
)
yield "\n".join(full_report), "", progress_value
time.sleep(0.1) # Prevent UI freezing
# Generate final summary
if len(booking_chunks) > 1:
summary_prompt = f"""
**Final Comprehensive Summary**
Analyze all {len(patient_data['bookings'])} bookings to identify:
1. Overall health trajectory
2. Chronic condition patterns
3. Medication safety across entire treatment
4. Most critical missed opportunities
5. Priority recommendations
**Required Format:**
### Health Trajectory
[Overall progression of health status]
### Chronic Condition Analysis
[Patterns indicating chronic issues]
### Critical Concerns
[Most urgent issues needing attention]
### Priority Recommendations
[Action items ranked by importance]
"""
summary = analyze_with_agent(agent, summary_prompt)
full_report.append(f"## Final Comprehensive Summary\n{summary}\n")
# Save report
report_filename = f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
report_path = os.path.join(report_dir, report_filename)
with open(report_path, 'w', encoding='utf-8') as f:
f.write("\n".join(full_report))
yield "\n".join(full_report), report_path, 100
except Exception as e:
raise gr.Error(f"Analysis failed: {str(e)}")
analysis_btn.click(
analyze_patient,
inputs=file_upload,
outputs=[output_display, report_download, progress],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |