File size: 14,853 Bytes
f75a23b
f394b25
d184610
d16299c
f394b25
d16299c
a7e68bf
1244d40
d16299c
1c5bd8e
d16299c
d184610
d8282f1
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
d16299c
 
 
1244d40
 
 
4ba3497
 
 
 
 
f75a23b
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba3497
 
d16299c
 
4ba3497
d16299c
 
 
 
 
4ba3497
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e68bf
 
d16299c
 
 
a7e68bf
4ba3497
d16299c
 
 
4ba3497
d16299c
4ba3497
d16299c
4ba3497
 
d16299c
 
1c5bd8e
4ba3497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16299c
4ba3497
 
 
 
 
 
d16299c
4ba3497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16299c
4ba3497
d16299c
4ba3497
 
 
d16299c
4ba3497
 
 
 
 
 
 
 
 
 
 
 
 
d16299c
4ba3497
 
 
 
 
 
d16299c
 
d184610
d16299c
4ba3497
d16299c
 
 
 
 
d8282f1
d16299c
 
 
 
 
 
 
 
 
4ba3497
d16299c
 
 
 
 
4ba3497
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba3497
d8282f1
4ba3497
d8282f1
 
 
d16299c
 
a7e68bf
d16299c
d8282f1
4ba3497
d16299c
4ba3497
 
 
 
 
 
 
d8282f1
 
a7e68bf
 
 
d8282f1
a7e68bf
d8282f1
 
 
 
 
 
4ba3497
d8282f1
4ba3497
 
 
 
 
d184610
4ba3497
 
 
 
 
d16299c
4ba3497
 
 
 
a7e68bf
d8282f1
4ba3497
d16299c
 
 
4ba3497
 
 
d16299c
 
 
 
 
4ba3497
 
 
d16299c
4ba3497
 
 
 
 
 
 
d16299c
 
 
4ba3497
 
 
 
d16299c
 
 
4ba3497
 
d16299c
4ba3497
d16299c
4ba3497
 
 
 
 
 
d16299c
 
4ba3497
 
d16299c
4ba3497
 
d16299c
4ba3497
 
d16299c
4ba3497
 
d16299c
 
4ba3497
d16299c
 
4ba3497
 
d16299c
 
 
4ba3497
d16299c
 
 
 
 
 
 
4ba3497
d184610
d8282f1
 
a71a831
55e3db0
f394b25
d8282f1
d16299c
 
 
 
 
 
 
d8282f1
 
cbf903d
d16299c
 
d8282f1
 
d16299c
d8282f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants - Updated for 32,768 token limit
MAX_TOKENS = 32768
CHUNK_SIZE = 10000  # Target chunk size (allowing 3 chunks within limit)
MAX_NEW_TOKENS = 2048  # Increased output length
MAX_BOOKINGS_PER_CHUNK = 5  # Process 5 bookings per chunk

def file_hash(path: str) -> str:
    """Generate MD5 hash of file contents"""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    """Clean and normalize text output"""
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    """More accurate token estimation (1 token ~ 3-4 characters)"""
    return len(text) // 3.5  # More conservative estimate

def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
    """Enhanced patient data processing with chronology"""
    data = {
        'bookings': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'tests': defaultdict(list),
        'procedures': defaultdict(list),
        'doctors': set(),
        'timeline': []
    }
    
    # Sort by date and group by booking
    df = df.sort_values('Interview Date')
    for booking, group in df.groupby('Booking Number'):
        for _, row in group.iterrows():
            entry = {
                'booking': booking,
                'date': str(row['Interview Date']),
                'doctor': str(row['Interviewer']),
                'form': str(row['Form Name']),
                'item': str(row['Form Item']),
                'response': str(row['Item Response']),
                'notes': str(row['Description'])
            }
            
            data['bookings'][booking].append(entry)
            data['timeline'].append(entry)
            data['doctors'].add(entry['doctor'])
            
            # Enhanced categorization
            form_lower = entry['form'].lower()
            if 'medication' in form_lower or 'drug' in form_lower:
                data['medications'][entry['item']].append(entry)
            elif 'diagnosis' in form_lower or 'condition' in form_lower:
                data['diagnoses'][entry['item']].append(entry)
            elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
                data['tests'][entry['item']].append(entry)
            elif 'procedure' in form_lower or 'surgery' in form_lower:
                data['procedures'][entry['item']].append(entry)
    
    return data

def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
    """Generate comprehensive prompt for multiple bookings"""
    prompt_lines = [
        "**Comprehensive Patient Analysis**",
        f"Analyzing {len(bookings)} bookings spanning {patient_data['timeline'][0]['date']} to {patient_data['timeline'][-1]['date']}",
        "Focus on identifying patterns, inconsistencies, and missed opportunities across the entire treatment history.",
        "",
        "**Key Analysis Points:**",
        "- Chronological progression of symptoms and diagnoses",
        "- Medication changes and potential interactions over time",
        "- Diagnostic consistency across different providers",
        "- Missed diagnostic opportunities based on symptoms and test results",
        "- Gaps in follow-up or incomplete assessments",
        "- Emerging patterns that may indicate chronic conditions",
        "",
        "**Patient Timeline (Condensed):**"
    ]
    
    # Add condensed timeline
    for entry in patient_data['timeline']:
        if entry['booking'] in bookings:
            prompt_lines.append(
                f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
            )
    
    # Add current medications
    prompt_lines.extend([
        "",
        "**Medication History:**",
        *[f"- {med}: " + " → ".join(
            f"{e['date']}: {e['response']}" 
            for e in entries if e['booking'] in bookings
        ) for med, entries in patient_data['medications'].items()],
        "",
        "**Diagnostic History:**",
        *[f"- {diag}: " + " → ".join(
            f"{e['date']}: {e['response']}" 
            for e in entries if e['booking'] in bookings
        ) for diag, entries in patient_data['diagnoses'].items()],
        "",
        "**Required Analysis Format:**",
        "### Diagnostic Patterns",
        "[Identify patterns in symptoms and diagnoses over time]",
        "",
        "### Medication Analysis",
        "[Review all medication changes and potential issues]",
        "",
        "### Provider Consistency",
        "[Note any discrepancies between different doctors]",
        "",
        "### Missed Opportunities",
        "[Potential diagnoses or interventions that were missed]",
        "",
        "### Comprehensive Recommendations",
        "[Actionable recommendations for current care]"
    ])
    
    return "\n".join(prompt_lines)

def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]:
    """Split bookings into 3 balanced chunks based on token count"""
    all_bookings = list(patient_data['bookings'].keys())
    
    # Estimate token count for each booking
    booking_sizes = []
    for booking in all_bookings:
        entries = patient_data['bookings'][booking]
        size = sum(estimate_tokens(str(e)) for e in entries)
        booking_sizes.append((booking, size))
    
    # Sort by size (descending) for better chunk balancing
    booking_sizes.sort(key=lambda x: x[1], reverse=True)
    
    # Initialize 3 chunks
    chunks = [[] for _ in range(3)]
    chunk_sizes = [0, 0, 0]
    
    # Distribute bookings to chunks
    for booking, size in booking_sizes:
        # Find the chunk with smallest current size
        min_chunk = chunk_sizes.index(min(chunk_sizes))
        chunks[min_chunk].append(booking)
        chunk_sizes[min_chunk] += size
    
    return chunks

def init_agent():
    """Initialize TxAgent with enhanced configuration"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
        device_map="auto"
    )
    agent.init_model()
    return agent

def analyze_with_agent(agent, prompt: str) -> str:
    """Enhanced analysis with progress tracking"""
    try:
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, list):
                for r in result:
                    if hasattr(r, 'content') and r.content:
                        response += clean_response(r.content) + "\n"
            elif isinstance(result, str):
                response += clean_response(result) + "\n"
            elif hasattr(result, 'content'):
                response += clean_response(result.content) + "\n"
        
        return response.strip()
    except Exception as e:
        return f"Error in analysis: {str(e)}"

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
        gr.Markdown("# 🏥 Comprehensive Patient History Analyzer")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Patient Excel File",
                            file_types=[".xlsx"],
                            file_count="single"
                        )
                        analysis_btn = gr.Button("Analyze Full History", variant="primary")
                        status = gr.Markdown("Ready for analysis")
                        progress = gr.Slider(
                            minimum=0, 
                            maximum=100, 
                            value=0,
                            label="Analysis Progress",
                            interactive=False
                        )
                    
                    with gr.Column(scale=2):
                        output_display = gr.Markdown(
                            label="Analysis Results",
                            elem_id="results"
                        )
                        report_download = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## Enhanced Patient History Analysis
                
                This tool processes complete medical histories across multiple visits, identifying:
                - Patterns in symptoms and diagnoses over time
                - Medication safety issues across providers
                - Missed diagnostic opportunities
                - Gaps in follow-up care
                
                **How to Use:**
                1. Upload Excel file with patient history
                2. Click "Analyze Full History"
                3. View progressive results
                4. Download comprehensive report
                
                **File Requirements:**
                - Must contain complete visit history
                - Required columns: Booking Number, Interview Date, Interviewer, 
                  Form Name, Form Item, Item Response, Description
                """)
        
        def analyze_patient(file) -> Tuple[str, str, int]:
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            full_report = []
            report_path = ""
            
            try:
                # Process Excel file
                df = pd.read_excel(file.name)
                patient_data = process_patient_data(df)
                
                # Split into 3 balanced chunks
                booking_chunks = chunk_bookings(patient_data)
                total_chunks = len(booking_chunks)
                
                for chunk_idx, bookings in enumerate(booking_chunks, 1):
                    # Update progress
                    progress_value = int((chunk_idx/total_chunks)*100)
                    yield "", "", progress_value
                    
                    # Generate and process prompt
                    prompt = generate_analysis_prompt(patient_data, bookings)
                    response = analyze_with_agent(agent, prompt)
                    
                    if "Error in analysis" not in response:
                        full_report.append(
                            f"## Analysis Segment {chunk_idx} (Bookings: {', '.join(bookings)})\n{response}\n"
                        )
                        yield "\n".join(full_report), "", progress_value
                    
                    time.sleep(0.1)  # Prevent UI freezing
                
                # Generate final summary
                if len(booking_chunks) > 1:
                    summary_prompt = f"""
**Final Comprehensive Summary**

Analyze all {len(patient_data['bookings'])} bookings to identify:
1. Overall health trajectory
2. Chronic condition patterns
3. Medication safety across entire treatment
4. Most critical missed opportunities
5. Priority recommendations

**Required Format:**
### Health Trajectory
[Overall progression of health status]

### Chronic Condition Analysis
[Patterns indicating chronic issues]

### Critical Concerns
[Most urgent issues needing attention]

### Priority Recommendations
[Action items ranked by importance]
"""
                    summary = analyze_with_agent(agent, summary_prompt)
                    full_report.append(f"## Final Comprehensive Summary\n{summary}\n")
                
                # Save report
                report_filename = f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
                report_path = os.path.join(report_dir, report_filename)
                with open(report_path, 'w', encoding='utf-8') as f:
                    f.write("\n".join(full_report))
                
                yield "\n".join(full_report), report_path, 100
                
            except Exception as e:
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        analysis_btn.click(
            analyze_patient,
            inputs=file_upload,
            outputs=[output_display, report_download, progress],
            api_name="analyze"
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)