Update app.py
Browse files
app.py
CHANGED
@@ -32,10 +32,11 @@ sys.path.insert(0, src_path)
|
|
32 |
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
-
# Constants
|
36 |
-
MAX_TOKENS = 32768
|
37 |
-
CHUNK_SIZE =
|
38 |
-
MAX_NEW_TOKENS =
|
|
|
39 |
|
40 |
def file_hash(path: str) -> str:
|
41 |
"""Generate MD5 hash of file contents"""
|
@@ -55,16 +56,17 @@ def clean_response(text: str) -> str:
|
|
55 |
return text.strip()
|
56 |
|
57 |
def estimate_tokens(text: str) -> int:
|
58 |
-
"""
|
59 |
-
return len(text) //
|
60 |
|
61 |
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
62 |
-
"""
|
63 |
data = {
|
64 |
'bookings': defaultdict(list),
|
65 |
'medications': defaultdict(list),
|
66 |
'diagnoses': defaultdict(list),
|
67 |
'tests': defaultdict(list),
|
|
|
68 |
'doctors': set(),
|
69 |
'timeline': []
|
70 |
}
|
@@ -87,116 +89,107 @@ def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
|
87 |
data['timeline'].append(entry)
|
88 |
data['doctors'].add(entry['doctor'])
|
89 |
|
90 |
-
#
|
91 |
form_lower = entry['form'].lower()
|
92 |
if 'medication' in form_lower or 'drug' in form_lower:
|
93 |
data['medications'][entry['item']].append(entry)
|
94 |
-
elif 'diagnosis' in form_lower:
|
95 |
data['diagnoses'][entry['item']].append(entry)
|
96 |
-
elif 'test' in form_lower or 'lab' in form_lower:
|
97 |
data['tests'][entry['item']].append(entry)
|
|
|
|
|
98 |
|
99 |
return data
|
100 |
|
101 |
-
def generate_analysis_prompt(patient_data: Dict[str, Any],
|
102 |
-
"""Generate
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
# Get current medications
|
112 |
-
current_meds = []
|
113 |
-
for med, entries in patient_data['medications'].items():
|
114 |
-
if any(e['booking'] == booking for e in entries):
|
115 |
-
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
|
116 |
-
current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})")
|
117 |
|
118 |
-
#
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
|
126 |
-
**Comprehensive Patient Analysis - Booking {booking}**
|
127 |
-
|
128 |
-
**Patient Timeline:**
|
129 |
-
{timeline}
|
130 |
-
|
131 |
-
**Current Medications:**
|
132 |
-
{'\n'.join(current_meds) if current_meds else "None recorded"}
|
133 |
-
|
134 |
-
**Current Diagnoses:**
|
135 |
-
{'\n'.join(current_diags) if current_diags else "None recorded"}
|
136 |
-
|
137 |
-
**Analysis Instructions:**
|
138 |
-
1. Review the patient's complete history across all visits
|
139 |
-
2. Identify any potential missed diagnoses based on symptoms and test results
|
140 |
-
3. Check for medication conflicts or inappropriate prescriptions
|
141 |
-
4. Note any incomplete assessments or missing tests
|
142 |
-
5. Flag any urgent follow-up needs
|
143 |
-
6. Compare findings across different doctors for consistency
|
144 |
-
|
145 |
-
**Required Output Format:**
|
146 |
-
### Missed Diagnoses
|
147 |
-
[Potential diagnoses that were not identified]
|
148 |
-
|
149 |
-
### Medication Issues
|
150 |
-
[Conflicts, side effects, inappropriate prescriptions]
|
151 |
-
|
152 |
-
### Assessment Gaps
|
153 |
-
[Missing tests or incomplete evaluations]
|
154 |
-
|
155 |
-
### Follow-up Recommendations
|
156 |
-
[Urgent and non-urgent follow-up needs]
|
157 |
-
|
158 |
-
### Doctor Consistency
|
159 |
-
[Discrepancies between different providers]
|
160 |
-
"""
|
161 |
-
return prompt
|
162 |
|
163 |
-
def
|
164 |
-
"""Split
|
165 |
-
|
166 |
-
current_chunk = defaultdict(list)
|
167 |
-
current_size = 0
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
if any(e['booking'] == booking for e in med_entries):
|
183 |
-
current_chunk['medications'][med].extend(
|
184 |
-
e for e in med_entries if e['booking'] == booking
|
185 |
-
)
|
186 |
-
|
187 |
-
for diag, diag_entries in patient_data['diagnoses'].items():
|
188 |
-
if any(e['booking'] == booking for e in diag_entries):
|
189 |
-
current_chunk['diagnoses'][diag].extend(
|
190 |
-
e for e in diag_entries if e['booking'] == booking
|
191 |
-
)
|
192 |
|
193 |
-
|
194 |
-
|
|
|
|
|
|
|
|
|
195 |
|
196 |
return chunks
|
197 |
|
198 |
def init_agent():
|
199 |
-
"""Initialize TxAgent with
|
200 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
201 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
202 |
|
@@ -212,12 +205,13 @@ def init_agent():
|
|
212 |
step_rag_num=4,
|
213 |
seed=100,
|
214 |
additional_default_tools=[],
|
|
|
215 |
)
|
216 |
agent.init_model()
|
217 |
return agent
|
218 |
|
219 |
def analyze_with_agent(agent, prompt: str) -> str:
|
220 |
-
"""
|
221 |
try:
|
222 |
response = ""
|
223 |
for result in agent.run_gradio_chat(
|
@@ -244,9 +238,9 @@ def analyze_with_agent(agent, prompt: str) -> str:
|
|
244 |
|
245 |
def create_ui(agent):
|
246 |
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
|
247 |
-
gr.Markdown("# 🏥 Comprehensive Patient History
|
248 |
|
249 |
-
|
250 |
with gr.TabItem("Analysis"):
|
251 |
with gr.Row():
|
252 |
with gr.Column(scale=1):
|
@@ -255,8 +249,15 @@ def create_ui(agent):
|
|
255 |
file_types=[".xlsx"],
|
256 |
file_count="single"
|
257 |
)
|
258 |
-
analysis_btn = gr.Button("Analyze
|
259 |
status = gr.Markdown("Ready for analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
260 |
|
261 |
with gr.Column(scale=2):
|
262 |
output_display = gr.Markdown(
|
@@ -270,91 +271,94 @@ def create_ui(agent):
|
|
270 |
|
271 |
with gr.TabItem("Instructions"):
|
272 |
gr.Markdown("""
|
273 |
-
##
|
274 |
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
- Form Name
|
286 |
-
- Form Item
|
287 |
-
- Item Response
|
288 |
-
- Description
|
289 |
|
290 |
-
|
291 |
-
-
|
292 |
-
-
|
293 |
-
|
294 |
-
- Doctor consistency checks
|
295 |
-
- Follow-up recommendations
|
296 |
""")
|
297 |
|
298 |
-
def analyze_patient(file) -> Tuple[str, str]:
|
299 |
if not file:
|
300 |
raise gr.Error("Please upload an Excel file first")
|
301 |
|
|
|
|
|
|
|
302 |
try:
|
303 |
# Process Excel file
|
304 |
df = pd.read_excel(file.name)
|
305 |
patient_data = process_patient_data(df)
|
306 |
|
307 |
-
#
|
308 |
-
|
309 |
-
|
310 |
|
311 |
-
for
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
313 |
response = analyze_with_agent(agent, prompt)
|
314 |
|
315 |
if "Error in analysis" not in response:
|
316 |
-
|
317 |
-
|
|
|
|
|
318 |
|
319 |
-
yield "\n".join(full_report), None
|
320 |
time.sleep(0.1) # Prevent UI freezing
|
321 |
|
322 |
-
# Generate
|
323 |
-
if
|
324 |
summary_prompt = f"""
|
325 |
-
**Comprehensive
|
326 |
|
327 |
-
Analyze all bookings
|
328 |
-
1.
|
329 |
-
2. Chronic
|
330 |
-
3. Medication
|
331 |
-
4.
|
332 |
-
5.
|
333 |
|
334 |
**Required Format:**
|
335 |
-
###
|
336 |
-
[
|
337 |
-
|
338 |
-
ascopy
|
339 |
|
340 |
-
###
|
341 |
-
[
|
342 |
|
343 |
-
###
|
344 |
-
[
|
345 |
|
346 |
-
###
|
347 |
-
[
|
348 |
"""
|
349 |
summary = analyze_with_agent(agent, summary_prompt)
|
350 |
-
full_report.append(f"##
|
351 |
|
352 |
# Save report
|
353 |
-
|
|
|
354 |
with open(report_path, 'w', encoding='utf-8') as f:
|
355 |
f.write("\n".join(full_report))
|
356 |
|
357 |
-
yield "\n".join(full_report), report_path
|
358 |
|
359 |
except Exception as e:
|
360 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
@@ -362,7 +366,7 @@ ascopy
|
|
362 |
analysis_btn.click(
|
363 |
analyze_patient,
|
364 |
inputs=file_upload,
|
365 |
-
outputs=[output_display, report_download],
|
366 |
api_name="analyze"
|
367 |
)
|
368 |
|
|
|
32 |
|
33 |
from txagent.txagent import TxAgent
|
34 |
|
35 |
+
# Constants - Updated for 32,768 token limit
|
36 |
+
MAX_TOKENS = 32768
|
37 |
+
CHUNK_SIZE = 10000 # Target chunk size (allowing 3 chunks within limit)
|
38 |
+
MAX_NEW_TOKENS = 2048 # Increased output length
|
39 |
+
MAX_BOOKINGS_PER_CHUNK = 5 # Process 5 bookings per chunk
|
40 |
|
41 |
def file_hash(path: str) -> str:
|
42 |
"""Generate MD5 hash of file contents"""
|
|
|
56 |
return text.strip()
|
57 |
|
58 |
def estimate_tokens(text: str) -> int:
|
59 |
+
"""More accurate token estimation (1 token ~ 3-4 characters)"""
|
60 |
+
return len(text) // 3.5 # More conservative estimate
|
61 |
|
62 |
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
|
63 |
+
"""Enhanced patient data processing with chronology"""
|
64 |
data = {
|
65 |
'bookings': defaultdict(list),
|
66 |
'medications': defaultdict(list),
|
67 |
'diagnoses': defaultdict(list),
|
68 |
'tests': defaultdict(list),
|
69 |
+
'procedures': defaultdict(list),
|
70 |
'doctors': set(),
|
71 |
'timeline': []
|
72 |
}
|
|
|
89 |
data['timeline'].append(entry)
|
90 |
data['doctors'].add(entry['doctor'])
|
91 |
|
92 |
+
# Enhanced categorization
|
93 |
form_lower = entry['form'].lower()
|
94 |
if 'medication' in form_lower or 'drug' in form_lower:
|
95 |
data['medications'][entry['item']].append(entry)
|
96 |
+
elif 'diagnosis' in form_lower or 'condition' in form_lower:
|
97 |
data['diagnoses'][entry['item']].append(entry)
|
98 |
+
elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
|
99 |
data['tests'][entry['item']].append(entry)
|
100 |
+
elif 'procedure' in form_lower or 'surgery' in form_lower:
|
101 |
+
data['procedures'][entry['item']].append(entry)
|
102 |
|
103 |
return data
|
104 |
|
105 |
+
def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
|
106 |
+
"""Generate comprehensive prompt for multiple bookings"""
|
107 |
+
prompt_lines = [
|
108 |
+
"**Comprehensive Patient Analysis**",
|
109 |
+
f"Analyzing {len(bookings)} bookings spanning {patient_data['timeline'][0]['date']} to {patient_data['timeline'][-1]['date']}",
|
110 |
+
"Focus on identifying patterns, inconsistencies, and missed opportunities across the entire treatment history.",
|
111 |
+
"",
|
112 |
+
"**Key Analysis Points:**",
|
113 |
+
"- Chronological progression of symptoms and diagnoses",
|
114 |
+
"- Medication changes and potential interactions over time",
|
115 |
+
"- Diagnostic consistency across different providers",
|
116 |
+
"- Missed diagnostic opportunities based on symptoms and test results",
|
117 |
+
"- Gaps in follow-up or incomplete assessments",
|
118 |
+
"- Emerging patterns that may indicate chronic conditions",
|
119 |
+
"",
|
120 |
+
"**Patient Timeline (Condensed):**"
|
121 |
+
]
|
122 |
|
123 |
+
# Add condensed timeline
|
124 |
+
for entry in patient_data['timeline']:
|
125 |
+
if entry['booking'] in bookings:
|
126 |
+
prompt_lines.append(
|
127 |
+
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
|
128 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# Add current medications
|
131 |
+
prompt_lines.extend([
|
132 |
+
"",
|
133 |
+
"**Medication History:**",
|
134 |
+
*[f"- {med}: " + " → ".join(
|
135 |
+
f"{e['date']}: {e['response']}"
|
136 |
+
for e in entries if e['booking'] in bookings
|
137 |
+
) for med, entries in patient_data['medications'].items()],
|
138 |
+
"",
|
139 |
+
"**Diagnostic History:**",
|
140 |
+
*[f"- {diag}: " + " → ".join(
|
141 |
+
f"{e['date']}: {e['response']}"
|
142 |
+
for e in entries if e['booking'] in bookings
|
143 |
+
) for diag, entries in patient_data['diagnoses'].items()],
|
144 |
+
"",
|
145 |
+
"**Required Analysis Format:**",
|
146 |
+
"### Diagnostic Patterns",
|
147 |
+
"[Identify patterns in symptoms and diagnoses over time]",
|
148 |
+
"",
|
149 |
+
"### Medication Analysis",
|
150 |
+
"[Review all medication changes and potential issues]",
|
151 |
+
"",
|
152 |
+
"### Provider Consistency",
|
153 |
+
"[Note any discrepancies between different doctors]",
|
154 |
+
"",
|
155 |
+
"### Missed Opportunities",
|
156 |
+
"[Potential diagnoses or interventions that were missed]",
|
157 |
+
"",
|
158 |
+
"### Comprehensive Recommendations",
|
159 |
+
"[Actionable recommendations for current care]"
|
160 |
+
])
|
161 |
|
162 |
+
return "\n".join(prompt_lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
+
def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]:
|
165 |
+
"""Split bookings into 3 balanced chunks based on token count"""
|
166 |
+
all_bookings = list(patient_data['bookings'].keys())
|
|
|
|
|
167 |
|
168 |
+
# Estimate token count for each booking
|
169 |
+
booking_sizes = []
|
170 |
+
for booking in all_bookings:
|
171 |
+
entries = patient_data['bookings'][booking]
|
172 |
+
size = sum(estimate_tokens(str(e)) for e in entries)
|
173 |
+
booking_sizes.append((booking, size))
|
174 |
+
|
175 |
+
# Sort by size (descending) for better chunk balancing
|
176 |
+
booking_sizes.sort(key=lambda x: x[1], reverse=True)
|
177 |
+
|
178 |
+
# Initialize 3 chunks
|
179 |
+
chunks = [[] for _ in range(3)]
|
180 |
+
chunk_sizes = [0, 0, 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
# Distribute bookings to chunks
|
183 |
+
for booking, size in booking_sizes:
|
184 |
+
# Find the chunk with smallest current size
|
185 |
+
min_chunk = chunk_sizes.index(min(chunk_sizes))
|
186 |
+
chunks[min_chunk].append(booking)
|
187 |
+
chunk_sizes[min_chunk] += size
|
188 |
|
189 |
return chunks
|
190 |
|
191 |
def init_agent():
|
192 |
+
"""Initialize TxAgent with enhanced configuration"""
|
193 |
default_tool_path = os.path.abspath("data/new_tool.json")
|
194 |
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
|
195 |
|
|
|
205 |
step_rag_num=4,
|
206 |
seed=100,
|
207 |
additional_default_tools=[],
|
208 |
+
device_map="auto"
|
209 |
)
|
210 |
agent.init_model()
|
211 |
return agent
|
212 |
|
213 |
def analyze_with_agent(agent, prompt: str) -> str:
|
214 |
+
"""Enhanced analysis with progress tracking"""
|
215 |
try:
|
216 |
response = ""
|
217 |
for result in agent.run_gradio_chat(
|
|
|
238 |
|
239 |
def create_ui(agent):
|
240 |
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
|
241 |
+
gr.Markdown("# 🏥 Comprehensive Patient History Analyzer")
|
242 |
|
243 |
+
with gr.Tabs():
|
244 |
with gr.TabItem("Analysis"):
|
245 |
with gr.Row():
|
246 |
with gr.Column(scale=1):
|
|
|
249 |
file_types=[".xlsx"],
|
250 |
file_count="single"
|
251 |
)
|
252 |
+
analysis_btn = gr.Button("Analyze Full History", variant="primary")
|
253 |
status = gr.Markdown("Ready for analysis")
|
254 |
+
progress = gr.Slider(
|
255 |
+
minimum=0,
|
256 |
+
maximum=100,
|
257 |
+
value=0,
|
258 |
+
label="Analysis Progress",
|
259 |
+
interactive=False
|
260 |
+
)
|
261 |
|
262 |
with gr.Column(scale=2):
|
263 |
output_display = gr.Markdown(
|
|
|
271 |
|
272 |
with gr.TabItem("Instructions"):
|
273 |
gr.Markdown("""
|
274 |
+
## Enhanced Patient History Analysis
|
275 |
|
276 |
+
This tool processes complete medical histories across multiple visits, identifying:
|
277 |
+
- Patterns in symptoms and diagnoses over time
|
278 |
+
- Medication safety issues across providers
|
279 |
+
- Missed diagnostic opportunities
|
280 |
+
- Gaps in follow-up care
|
281 |
|
282 |
+
**How to Use:**
|
283 |
+
1. Upload Excel file with patient history
|
284 |
+
2. Click "Analyze Full History"
|
285 |
+
3. View progressive results
|
286 |
+
4. Download comprehensive report
|
|
|
|
|
|
|
|
|
287 |
|
288 |
+
**File Requirements:**
|
289 |
+
- Must contain complete visit history
|
290 |
+
- Required columns: Booking Number, Interview Date, Interviewer,
|
291 |
+
Form Name, Form Item, Item Response, Description
|
|
|
|
|
292 |
""")
|
293 |
|
294 |
+
def analyze_patient(file) -> Tuple[str, str, int]:
|
295 |
if not file:
|
296 |
raise gr.Error("Please upload an Excel file first")
|
297 |
|
298 |
+
full_report = []
|
299 |
+
report_path = ""
|
300 |
+
|
301 |
try:
|
302 |
# Process Excel file
|
303 |
df = pd.read_excel(file.name)
|
304 |
patient_data = process_patient_data(df)
|
305 |
|
306 |
+
# Split into 3 balanced chunks
|
307 |
+
booking_chunks = chunk_bookings(patient_data)
|
308 |
+
total_chunks = len(booking_chunks)
|
309 |
|
310 |
+
for chunk_idx, bookings in enumerate(booking_chunks, 1):
|
311 |
+
# Update progress
|
312 |
+
progress_value = int((chunk_idx/total_chunks)*100)
|
313 |
+
yield "", "", progress_value
|
314 |
+
|
315 |
+
# Generate and process prompt
|
316 |
+
prompt = generate_analysis_prompt(patient_data, bookings)
|
317 |
response = analyze_with_agent(agent, prompt)
|
318 |
|
319 |
if "Error in analysis" not in response:
|
320 |
+
full_report.append(
|
321 |
+
f"## Analysis Segment {chunk_idx} (Bookings: {', '.join(bookings)})\n{response}\n"
|
322 |
+
)
|
323 |
+
yield "\n".join(full_report), "", progress_value
|
324 |
|
|
|
325 |
time.sleep(0.1) # Prevent UI freezing
|
326 |
|
327 |
+
# Generate final summary
|
328 |
+
if len(booking_chunks) > 1:
|
329 |
summary_prompt = f"""
|
330 |
+
**Final Comprehensive Summary**
|
331 |
|
332 |
+
Analyze all {len(patient_data['bookings'])} bookings to identify:
|
333 |
+
1. Overall health trajectory
|
334 |
+
2. Chronic condition patterns
|
335 |
+
3. Medication safety across entire treatment
|
336 |
+
4. Most critical missed opportunities
|
337 |
+
5. Priority recommendations
|
338 |
|
339 |
**Required Format:**
|
340 |
+
### Health Trajectory
|
341 |
+
[Overall progression of health status]
|
|
|
|
|
342 |
|
343 |
+
### Chronic Condition Analysis
|
344 |
+
[Patterns indicating chronic issues]
|
345 |
|
346 |
+
### Critical Concerns
|
347 |
+
[Most urgent issues needing attention]
|
348 |
|
349 |
+
### Priority Recommendations
|
350 |
+
[Action items ranked by importance]
|
351 |
"""
|
352 |
summary = analyze_with_agent(agent, summary_prompt)
|
353 |
+
full_report.append(f"## Final Comprehensive Summary\n{summary}\n")
|
354 |
|
355 |
# Save report
|
356 |
+
report_filename = f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
|
357 |
+
report_path = os.path.join(report_dir, report_filename)
|
358 |
with open(report_path, 'w', encoding='utf-8') as f:
|
359 |
f.write("\n".join(full_report))
|
360 |
|
361 |
+
yield "\n".join(full_report), report_path, 100
|
362 |
|
363 |
except Exception as e:
|
364 |
raise gr.Error(f"Analysis failed: {str(e)}")
|
|
|
366 |
analysis_btn.click(
|
367 |
analyze_patient,
|
368 |
inputs=file_upload,
|
369 |
+
outputs=[output_display, report_download, progress],
|
370 |
api_name="analyze"
|
371 |
)
|
372 |
|