File size: 7,376 Bytes
1777737 3a20a5b 728def5 3a20a5b 446fbec dfe34bb 446fbec 841c3cb 0e7a2f6 dfe34bb 28560cd dfe34bb 28560cd 446fbec 3a20a5b 41945fe 3a20a5b 41945fe 3a20a5b ff7a915 446fbec ff7a915 dfe34bb 446fbec dfe34bb 28560cd dfe34bb 28560cd 446fbec 28560cd 446fbec dfe34bb 446fbec 28560cd 446fbec dfe34bb 446fbec dfe34bb 3492c23 446fbec 3ae42d2 3a20a5b 774fd26 3492c23 28560cd dfe34bb 4e4aafc dfe34bb 4a6ed35 28560cd dfe34bb 28560cd 446fbec 28560cd 446fbec 28560cd 446fbec 28560cd 446fbec 28560cd 841c3cb 446fbec 841c3cb 28560cd 446fbec 28560cd 88317c7 3a20a5b 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 841c3cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from typing import List
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"File not found: {file_path}"
if progress:
progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")
if file_path.endswith(".csv"):
df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
elif file_path.endswith((".xls", ".xlsx")):
df = pd.read_excel(file_path, engine="openpyxl")
else:
return f"Unsupported spreadsheet format: {file_path}"
lines = []
for _, row in df.iterrows():
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
if line:
lines.append(line)
return f"\ud83d\udcc4 {os.path.basename(file_path)}\n\n" + "\n".join(lines)
except Exception as e:
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"PDF not found: {file_path}"
extracted = []
with pdfplumber.open(file_path) as pdf:
num_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
try:
text = page.extract_text() or ""
extracted.append(text.strip())
if progress:
progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
except Exception as e:
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
return f"\ud83d\udcc4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)
except Exception as e:
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>\ud83d\udccb CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed."
)
try:
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
total_files = len(uploaded_files)
for index, file in enumerate(uploaded_files):
if not hasattr(file, 'name'):
continue
path = file.name
try:
if path.endswith((".csv", ".xls", ".xlsx")):
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
except Exception as file_error:
extracted_text += f"[Error processing file: {os.path.basename(path)}] — {str(file_error)}\n"
continue
message = (
f"{context}\n\n--- Uploaded File Content ---\n\n{extracted_text.strip()}\n\n--- End of File ---\n\nNow begin your reasoning:"
)
generator = agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
for update in generator:
try:
if isinstance(update, list):
cleaned = [
msg for msg in update
if hasattr(msg, 'role')
and not (
msg.role == "assistant"
and hasattr(msg, 'content')
and msg.content.strip().startswith("\ud83e\udde0")
)
]
if cleaned:
yield cleaned
elif isinstance(update, str) and not update.strip().startswith("\ud83e\udde0"):
yield update.encode("utf-8", "replace").decode("utf-8")
except Exception as update_error:
print(f"Error processing update: {update_error}")
continue
except Exception as chat_error:
print(f"Chat handling error: {chat_error}")
yield "An error occurred while processing your request. Please try again."
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo
|