File size: 5,797 Bytes
1777737 3a20a5b 728def5 3a20a5b ff7a915 dfe34bb 3a20a5b dfe34bb 0e7a2f6 dfe34bb 3a20a5b dfe34bb 3a20a5b ff7a915 3a20a5b ff7a915 ed59741 ff7a915 ed59741 ff7a915 dfe34bb 3a20a5b dfe34bb 3a20a5b dfe34bb 3a20a5b dfe34bb 3a20a5b ed59741 dfe34bb 3492c23 ff7a915 3ae42d2 3a20a5b 774fd26 3492c23 3a20a5b dfe34bb 4e4aafc dfe34bb 4a6ed35 3a20a5b dfe34bb 3a20a5b dfe34bb 3a20a5b dfe34bb 3a20a5b 0e7a2f6 3a20a5b 0e7a2f6 3ae42d2 4a6ed35 3492c23 3a20a5b 3492c23 88317c7 3a20a5b 88317c7 3a20a5b 3ae42d2 3a20a5b 3492c23 ed59741 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from tabulate import tabulate
# ✅ Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def extract_all_text_from_csv_or_excel(file_path, progress=None, index=0, total=1):
try:
if file_path.endswith(".csv"):
df = pd.read_csv(file_path, low_memory=False)
elif file_path.endswith((".xls", ".xlsx")):
df = pd.read_excel(file_path)
else:
return f"Unsupported spreadsheet format: {file_path}"
if progress:
progress((index + 1) / total, desc=f"Processed table: {os.path.basename(file_path)}")
if "Booking Number" in df.columns:
groups = df.groupby("Booking Number")
elif "Form Name" in df.columns:
groups = df.groupby("Form Name")
else:
return tabulate(df, headers="keys", tablefmt="github", showindex=False).encode("utf-8", errors="replace").decode("utf-8")
result = []
for group_name, group_df in groups:
result.append(f"\n### Group: {group_name}\n")
formatted = tabulate(group_df, headers="keys", tablefmt="github", showindex=False)
result.append(formatted.encode("utf-8", errors="replace").decode("utf-8"))
return "\n".join(result)
except Exception as e:
return f"Error parsing file: {e}"
def extract_all_text_from_pdf(file_path, progress=None, index=0, total=1):
extracted = []
try:
with pdfplumber.open(file_path) as pdf:
num_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
tables = page.extract_tables()
for table in tables:
for row in table:
if any(row):
extracted.append("\t".join([cell or "" for cell in row]))
if progress:
progress((index + i / num_pages) / total, desc=f"Parsing PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
return "\n".join(extracted).encode("utf-8", errors="replace").decode("utf-8")
except Exception as e:
return f"Error parsing PDF: {e}"
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>📋 CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages")
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message, history, conversation, uploaded_files, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed."
)
if uploaded_files:
extracted_text = ""
total_files = len(uploaded_files)
for index, file in enumerate(uploaded_files):
path = file.name
if path.endswith((".csv", ".xls", ".xlsx")):
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
if progress:
progress((index + 1) / total_files, desc=f"Skipping unsupported file: {os.path.basename(path)}")
message = f"{context}\n\n---\n{extracted_text.strip()}\n---\n\nBegin your reasoning."
generator = agent.run_gradio_chat(
message=message,
history=history,
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
for update in generator:
yield update
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might’ve missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo |