File size: 8,780 Bytes
f75a23b
f394b25
d184610
a57b988
f394b25
26faa43
8c16b9e
 
d16299c
1c5bd8e
8c16b9e
d8282f1
8c16b9e
f6e551c
 
8c16b9e
f6e551c
 
a57b988
f6e551c
8c16b9e
3ed8d49
 
8c16b9e
4bfbcac
0fb33af
f75a23b
62ef904
8b1bbeb
1244d40
7a8204e
 
 
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a57b988
 
 
26faa43
ad85a12
26faa43
8c16b9e
 
26faa43
 
8c16b9e
1a611b9
8b1bbeb
26faa43
8c16b9e
 
ad85a12
3ed8d49
8c16b9e
 
 
 
ad85a12
8c16b9e
 
26faa43
8c16b9e
ad85a12
 
 
a57b988
8c16b9e
0e6914c
8c16b9e
 
 
 
 
 
3ed8d49
 
 
 
 
 
8c16b9e
a57b988
 
8c16b9e
26faa43
 
 
1a611b9
 
 
26faa43
1a611b9
 
 
 
 
 
 
a57b988
26faa43
 
 
 
8c16b9e
26faa43
 
 
 
8c16b9e
26faa43
 
 
 
8c16b9e
26faa43
8c16b9e
26faa43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa559b4
8c16b9e
 
26faa43
 
 
 
8c16b9e
 
26faa43
 
 
 
 
 
 
 
 
 
8c16b9e
26faa43
 
 
8c16b9e
26faa43
8c16b9e
26faa43
 
 
 
 
 
 
 
 
8c16b9e
 
26faa43
8c16b9e
26faa43
 
8c16b9e
 
26faa43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7771dd9
a71a831
55e3db0
abd27cc
d8282f1
a57b988
 
26faa43
d8282f1
8c16b9e
1a611b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any, Union
import hashlib
import shutil
import re
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed

# Setup directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_path: str) -> str:
    all_text = []
    xls = pd.ExcelFile(file_path)
    for sheet_name in xls.sheet_names:
        df = xls.parse(sheet_name).astype(str).fillna("")
        rows = df.apply(lambda row: " | ".join(row), axis=1)
        sheet_text = [f"[{sheet_name}] {line}" for line in rows]
        all_text.extend(sheet_text)
    return "\n".join(all_text)

def split_text_into_chunks(text: str, max_tokens: int = MAX_CHUNK_TOKENS) -> List[str]:
    effective_max = max_tokens - PROMPT_OVERHEAD
    lines, chunks, curr_chunk, curr_tokens = text.split("\n"), [], [], 0
    for line in lines:
        t = estimate_tokens(line)
        if curr_tokens + t > effective_max:
            if curr_chunk:
                chunks.append("\n".join(curr_chunk))
            curr_chunk, curr_tokens = [line], t
        else:
            curr_chunk.append(line)
            curr_tokens += t
    if curr_chunk:
        chunks.append("\n".join(curr_chunk))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Unstructured Clinical Records

Analyze the following clinical notes and provide a detailed, concise summary focusing on:
- Diagnostic Patterns
- Medication Issues
- Missed Opportunities
- Inconsistencies
- Follow-up Recommendations

---

{chunk}

---
Respond in well-structured bullet points with medical reasoning.
"""

def init_agent():
    tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(tool_path):
        shutil.copy(os.path.abspath("data/new_tool.json"), tool_path)
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def process_final_report(agent, file, chatbot_state: List[Dict[str, str]]) -> Tuple[List[Dict[str, str]], Union[str, None]]:
    messages = chatbot_state if chatbot_state else []
    if file is None or not hasattr(file, "name"):
        return messages + [{"role": "assistant", "content": "❌ Please upload a valid Excel file."}], None

    messages.append({"role": "user", "content": f"Processing Excel file: {os.path.basename(file.name)}"})
    text = extract_text_from_excel(file.name)
    chunks = split_text_into_chunks(text)
    chunk_responses = [None] * len(chunks)

    def analyze_chunk(i, chunk):
        prompt = build_prompt_from_text(chunk)
        response = ""
        for res in agent.run_gradio_chat(message=prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
            if isinstance(res, str):
                response += res
            elif hasattr(res, "content"):
                response += res.content
            elif isinstance(res, list):
                for r in res:
                    if hasattr(r, "content"):
                        response += r.content
        return i, clean_response(response)

    with ThreadPoolExecutor(max_workers=1) as executor:
        futures = [executor.submit(analyze_chunk, i, c) for i, c in enumerate(chunks)]
        for f in as_completed(futures):
            i, result = f.result()
            chunk_responses[i] = result

    valid = [r for r in chunk_responses if r and not r.startswith("❌")]
    if not valid:
        return messages + [{"role": "assistant", "content": "❌ No valid chunk results."}], None

    summary_prompt = f"Summarize this analysis in a final structured report:\n\n" + "\n\n".join(valid)
    messages.append({"role": "assistant", "content": "πŸ“Š Generating final report..."})

    final_report = ""
    for res in agent.run_gradio_chat(message=summary_prompt, history=[], temperature=0.2, max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS, call_agent=False, conversation=[]):
        if isinstance(res, str):
            final_report += res
        elif hasattr(res, "content"):
            final_report += res.content

    cleaned = clean_response(final_report)
    report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
    with open(report_path, 'w') as f:
        f.write(f"# 🧠 Final Patient Report\n\n{cleaned}")

    messages.append({"role": "assistant", "content": f"πŸ“Š Final Report:\n\n{cleaned}"})
    messages.append({"role": "assistant", "content": f"βœ… Report generated and saved: {os.path.basename(report_path)}"})
    return messages, report_path

def create_ui(agent):
    with gr.Blocks(css="""
        html, body, .gradio-container {
            height: 100vh;
            background-color: #111827;
            color: #e5e7eb;
            font-family: 'Inter', sans-serif;
        }
        .message-avatar {
            width: 38px;
            height: 38px;
            border-radius: 50%;
            margin-right: 10px;
        }
        .chat-message {
            display: flex;
            align-items: flex-start;
            margin-bottom: 1rem;
        }
        .message-bubble {
            background-color: #1f2937;
            padding: 12px 16px;
            border-radius: 12px;
            max-width: 90%;
        }
        .chat-input {
            background-color: #1f2937;
            border: 1px solid #374151;
            border-radius: 8px;
            color: #e5e7eb;
            padding: 0.75rem 1rem;
        }
        .gr-button.primary {
            background: #2563eb;
            color: white;
            border-radius: 8px;
            font-weight: 600;
        }
        .gr-button.primary:hover {
            background: #1e40af;
        }
    """) as demo:
        gr.Markdown("""<h2 style='color:#60a5fa'>🩺 Patient History AI Assistant</h2><p>Upload a clinical Excel file and receive a structured diagnostic summary.</p>""")
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    label="Clinical Assistant",
                    height=700,
                    type="messages",
                    avatar_images=[
                        "https://ui-avatars.com/api/?name=AI&background=2563eb&color=fff&size=128",
                        "https://ui-avatars.com/api/?name=You&background=374151&color=fff&size=128"
                    ]
                )
            with gr.Column(scale=1):
                with gr.Row():
                    file_upload = gr.File(label="", file_types=[".xlsx"], elem_id="upload-btn")
                    analyze_btn = gr.Button("🧠 Analyze", variant="primary")
                report_output = gr.File(label="Download Report", visible=False, interactive=False)

        chatbot_state = gr.State(value=[])

        def update_ui(file, current_state):
            messages, report_path = process_final_report(agent, file, current_state)
            return messages, gr.update(visible=report_path is not None, value=report_path), messages

        analyze_btn.click(fn=update_ui, inputs=[file_upload, chatbot_state], outputs=[chatbot, report_output, chatbot_state])

    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, allowed_paths=["/data/hf_cache/reports"], share=False)
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)