File size: 13,835 Bytes
f75a23b f394b25 d184610 d16299c f394b25 d16299c a7e68bf 1244d40 d16299c 1c5bd8e d16299c d184610 d8282f1 d16299c f75a23b d16299c 1244d40 1de8c2b f75a23b d16299c 1de8c2b d16299c 1de8c2b d16299c a7e68bf d16299c a7e68bf 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1c5bd8e 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b 4ba3497 1de8c2b 4ba3497 1de8c2b d16299c 1de8c2b d16299c d184610 d16299c 1de8c2b d16299c d8282f1 d16299c 1de8c2b d16299c 1de8c2b d8282f1 4ba3497 d8282f1 d16299c a7e68bf d16299c d8282f1 1de8c2b d16299c d8282f1 a7e68bf d8282f1 a7e68bf d8282f1 1de8c2b d8282f1 1de8c2b d184610 1de8c2b d16299c 1de8c2b a7e68bf d8282f1 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d16299c 1de8c2b d184610 d8282f1 a71a831 55e3db0 f394b25 d8282f1 d16299c d8282f1 cbf903d d16299c d8282f1 d16299c d8282f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict
# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
os.makedirs(directory, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir
current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)
from txagent.txagent import TxAgent
# Constants
MAX_TOKENS = 32768 # TxAgent's maximum token limit
CHUNK_SIZE = 3000 # Target chunk size to stay under token limit
MAX_NEW_TOKENS = 1024
def file_hash(path: str) -> str:
"""Generate MD5 hash of file contents"""
with open(path, "rb") as f:
return hashlib.md5(f.read()).hexdigest()
def clean_response(text: str) -> str:
"""Clean and normalize text output"""
try:
text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
except UnicodeError:
text = text.encode('utf-8', 'replace').decode('utf-8')
text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
text = re.sub(r"\n{3,}", "\n\n", text)
text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
return text.strip()
def estimate_tokens(text: str) -> int:
"""Approximate token count (1 token ~ 4 characters)"""
return len(text) // 4
def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
"""Process raw patient data into structured format"""
data = {
'bookings': defaultdict(list),
'medications': defaultdict(list),
'diagnoses': defaultdict(list),
'tests': defaultdict(list),
'doctors': set(),
'timeline': []
}
# Sort by date and group by booking
df = df.sort_values('Interview Date')
for booking, group in df.groupby('Booking Number'):
for _, row in group.iterrows():
entry = {
'booking': booking,
'date': str(row['Interview Date']),
'doctor': str(row['Interviewer']),
'form': str(row['Form Name']),
'item': str(row['Form Item']),
'response': str(row['Item Response']),
'notes': str(row['Description'])
}
data['bookings'][booking].append(entry)
data['timeline'].append(entry)
data['doctors'].add(entry['doctor'])
# Categorize entries
form_lower = entry['form'].lower()
if 'medication' in form_lower or 'drug' in form_lower:
data['medications'][entry['item']].append(entry)
elif 'diagnosis' in form_lower:
data['diagnoses'][entry['item']].append(entry)
elif 'test' in form_lower or 'lab' in form_lower:
data['tests'][entry['item']].append(entry)
return data
def generate_analysis_prompt(patient_data: Dict[str, Any], booking: str) -> str:
"""Generate focused analysis prompt for a booking"""
booking_entries = patient_data['bookings'][booking]
# Build timeline string
timeline = "\n".join(
f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
for entry in booking_entries
)
# Get current medications
current_meds = []
for med, entries in patient_data['medications'].items():
if any(e['booking'] == booking for e in entries):
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})")
# Get current diagnoses
current_diags = []
for diag, entries in patient_data['diagnoses'].items():
if any(e['booking'] == booking for e in entries):
latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
current_diags.append(f"- {diag}: {latest['response']} (as of {latest['date']})")
prompt = f"""
**Comprehensive Patient Analysis - Booking {booking}**
**Patient Timeline:**
{timeline}
**Current Medications:**
{'\n'.join(current_meds) if current_meds else "None recorded"}
**Current Diagnoses:**
{'\n'.join(current_diags) if current_diags else "None recorded"}
**Analysis Instructions:**
1. Review the patient's complete history across all visits
2. Identify any potential missed diagnoses based on symptoms and test results
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing tests
5. Flag any urgent follow-up needs
6. Compare findings across different doctors for consistency
**Required Output Format:**
### Missed Diagnoses
[Potential diagnoses that were not identified]
### Medication Issues
[Conflicts, side effects, inappropriate prescriptions]
### Assessment Gaps
[Missing tests or incomplete evaluations]
### Follow-up Recommendations
[Urgent and non-urgent follow-up needs]
### Doctor Consistency
[Discrepancies between different providers]
"""
return prompt
def chunk_patient_data(patient_data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""Split patient data into manageable chunks"""
chunks = []
current_chunk = defaultdict(list)
current_size = 0
for booking, entries in patient_data['bookings'].items():
booking_size = sum(estimate_tokens(str(e)) for e in entries)
if current_size + booking_size > CHUNK_SIZE and current_chunk:
chunks.append(dict(current_chunk))
current_chunk = defaultdict(list)
current_size = 0
current_chunk['bookings'][booking] = entries
current_size += booking_size
# Add related data
for med, med_entries in patient_data['medications'].items():
if any(e['booking'] == booking for e in med_entries):
current_chunk['medications'][med].extend(
e for e in med_entries if e['booking'] == booking
)
for diag, diag_entries in patient_data['diagnoses'].items():
if any(e['booking'] == booking for e in diag_entries):
current_chunk['diagnoses'][diag].extend(
e for e in diag_entries if e['booking'] == booking
)
if current_chunk:
chunks.append(dict(current_chunk))
return chunks
def init_agent():
"""Initialize TxAgent with proper configuration"""
default_tool_path = os.path.abspath("data/new_tool.json")
target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
if not os.path.exists(target_tool_path):
shutil.copy(default_tool_path, target_tool_path)
agent = TxAgent(
model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
tool_files_dict={"new_tool": target_tool_path},
force_finish=True,
enable_checker=True,
step_rag_num=4,
seed=100,
additional_default_tools=[],
)
agent.init_model()
return agent
def analyze_with_agent(agent, prompt: str) -> str:
"""Run analysis with proper error handling"""
try:
response = ""
for result in agent.run_gradio_chat(
message=prompt,
history=[],
temperature=0.2,
max_new_tokens=MAX_NEW_TOKENS,
max_token=MAX_TOKENS,
call_agent=False,
conversation=[],
):
if isinstance(result, list):
for r in result:
if hasattr(r, 'content') and r.content:
response += clean_response(r.content) + "\n"
elif isinstance(result, str):
response += clean_response(result) + "\n"
elif hasattr(result, 'content'):
response += clean_response(result.content) + "\n"
return response.strip()
except Exception as e:
return f"Error in analysis: {str(e)}"
def create_ui(agent):
with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
with gr.Tabs():
with gr.TabItem("Analysis"):
with gr.Row():
with gr.Column(scale=1):
file_upload = gr.File(
label="Upload Patient Excel File",
file_types=[".xlsx"],
file_count="single"
)
analysis_btn = gr.Button("Analyze Patient History", variant="primary")
status = gr.Markdown("Ready for analysis")
with gr.Column(scale=2):
output_display = gr.Markdown(
label="Analysis Results",
elem_id="results"
)
report_download = gr.File(
label="Download Full Report",
interactive=False
)
with gr.TabItem("Instructions"):
gr.Markdown("""
## How to Use This Tool
1. **Upload Excel File**: Patient history Excel file
2. **Click Analyze**: System will process all bookings
3. **Review Results**: Comprehensive analysis appears
4. **Download Report**: Full report with all findings
### Excel Requirements
Must contain these columns:
- Booking Number
- Interview Date
- Interviewer (Doctor)
- Form Name
- Form Item
- Item Response
- Description
### Analysis Includes:
- Missed diagnoses across visits
- Medication conflicts over time
- Incomplete assessments
- Doctor consistency checks
- Follow-up recommendations
""")
def analyze_patient(file) -> Tuple[str, str]:
if not file:
raise gr.Error("Please upload an Excel file first")
try:
# Process Excel file
df = pd.read_excel(file.name)
patient_data = process_patient_data(df)
# Generate and process prompts
full_report = []
bookings_processed = 0
for booking in patient_data['bookings']:
prompt = generate_analysis_prompt(patient_data, booking)
response = analyze_with_agent(agent, prompt)
if "Error in analysis" not in response:
bookings_processed += 1
full_report.append(f"## Booking {booking}\n{response}\n")
yield "\n".join(full_report), None
time.sleep(0.1) # Prevent UI freezing
# Generate overall summary
if bookings_processed > 1:
summary_prompt = """
**Comprehensive Patient Summary**
Analyze all bookings ({bookings_processed} total) to identify:
1. Patterns across the entire treatment history
2. Chronic issues that may have been missed
3. Medication changes over time
4. Doctor consistency across visits
5. Long-term recommendations
**Required Format:**
### Chronic Health Patterns
[Recurring issues over time]
### Treatment Evolution
[How treatment has changed]
### Long-term Concerns
[Issues needing ongoing attention]
### Comprehensive Recommendations
[Overall care plan]
""".format(bookings_processed=bookings_processed)
summary = analyze_with_agent(agent, summary_prompt)
full_report.append(f"## Overall Patient Summary\n{summary}\n")
# Save report
report_path = os.path.join(report_dir, f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
with open(report_path, 'w', encoding='utf-8') as f:
f.write("\n".join(full_report))
yield "\n".join(full_report), report_path
except Exception as e:
raise gr.Error(f"Analysis failed: {str(e)}")
analysis_btn.click(
analyze_patient,
inputs=file_upload,
outputs=[output_display, report_download],
api_name="analyze"
)
return demo
if __name__ == "__main__":
try:
agent = init_agent()
demo = create_ui(agent)
demo.queue(
api_open=False,
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
show_error=True,
allowed_paths=[report_dir],
share=False
)
except Exception as e:
print(f"Failed to launch application: {str(e)}")
sys.exit(1) |