File size: 13,835 Bytes
f75a23b
f394b25
d184610
d16299c
f394b25
d16299c
a7e68bf
1244d40
d16299c
1c5bd8e
d16299c
d184610
d8282f1
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
d16299c
 
 
1244d40
 
 
1de8c2b
 
 
 
f75a23b
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8c2b
 
d16299c
 
1de8c2b
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e68bf
 
d16299c
 
 
a7e68bf
1de8c2b
d16299c
 
 
1de8c2b
d16299c
1de8c2b
d16299c
 
 
1c5bd8e
1de8c2b
 
 
d16299c
1de8c2b
 
 
 
 
d16299c
1de8c2b
 
 
 
 
 
d16299c
1de8c2b
 
 
 
 
 
4ba3497
1de8c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba3497
1de8c2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d16299c
1de8c2b
 
d16299c
 
d184610
d16299c
1de8c2b
d16299c
 
 
 
 
d8282f1
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8c2b
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1de8c2b
d8282f1
4ba3497
d8282f1
 
 
d16299c
 
a7e68bf
d16299c
d8282f1
1de8c2b
d16299c
d8282f1
 
a7e68bf
 
 
d8282f1
a7e68bf
d8282f1
 
 
 
 
 
1de8c2b
d8282f1
1de8c2b
 
 
 
d184610
1de8c2b
 
 
 
 
 
 
 
 
d16299c
1de8c2b
 
 
 
 
 
a7e68bf
d8282f1
1de8c2b
d16299c
 
 
 
 
 
 
 
1de8c2b
 
 
d16299c
1de8c2b
 
d16299c
 
 
1de8c2b
 
d16299c
1de8c2b
d16299c
 
1de8c2b
 
 
 
d16299c
1de8c2b
 
 
 
 
 
d16299c
 
1de8c2b
 
d16299c
1de8c2b
 
d16299c
1de8c2b
 
d16299c
1de8c2b
 
 
d16299c
1de8c2b
d16299c
 
1de8c2b
d16299c
 
 
1de8c2b
d16299c
 
 
 
 
 
 
1de8c2b
d184610
d8282f1
 
a71a831
55e3db0
f394b25
d8282f1
d16299c
 
 
 
 
 
 
d8282f1
 
cbf903d
d16299c
 
d8282f1
 
d16299c
d8282f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_TOKENS = 32768  # TxAgent's maximum token limit
CHUNK_SIZE = 3000  # Target chunk size to stay under token limit
MAX_NEW_TOKENS = 1024

def file_hash(path: str) -> str:
    """Generate MD5 hash of file contents"""
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    """Clean and normalize text output"""
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    """Approximate token count (1 token ~ 4 characters)"""
    return len(text) // 4

def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
    """Process raw patient data into structured format"""
    data = {
        'bookings': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'tests': defaultdict(list),
        'doctors': set(),
        'timeline': []
    }
    
    # Sort by date and group by booking
    df = df.sort_values('Interview Date')
    for booking, group in df.groupby('Booking Number'):
        for _, row in group.iterrows():
            entry = {
                'booking': booking,
                'date': str(row['Interview Date']),
                'doctor': str(row['Interviewer']),
                'form': str(row['Form Name']),
                'item': str(row['Form Item']),
                'response': str(row['Item Response']),
                'notes': str(row['Description'])
            }
            
            data['bookings'][booking].append(entry)
            data['timeline'].append(entry)
            data['doctors'].add(entry['doctor'])
            
            # Categorize entries
            form_lower = entry['form'].lower()
            if 'medication' in form_lower or 'drug' in form_lower:
                data['medications'][entry['item']].append(entry)
            elif 'diagnosis' in form_lower:
                data['diagnoses'][entry['item']].append(entry)
            elif 'test' in form_lower or 'lab' in form_lower:
                data['tests'][entry['item']].append(entry)
    
    return data

def generate_analysis_prompt(patient_data: Dict[str, Any], booking: str) -> str:
    """Generate focused analysis prompt for a booking"""
    booking_entries = patient_data['bookings'][booking]
    
    # Build timeline string
    timeline = "\n".join(
        f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
        for entry in booking_entries
    )
    
    # Get current medications
    current_meds = []
    for med, entries in patient_data['medications'].items():
        if any(e['booking'] == booking for e in entries):
            latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
            current_meds.append(f"- {med}: {latest['response']} (as of {latest['date']})")
    
    # Get current diagnoses
    current_diags = []
    for diag, entries in patient_data['diagnoses'].items():
        if any(e['booking'] == booking for e in entries):
            latest = max((e for e in entries if e['booking'] == booking), key=lambda x: x['date'])
            current_diags.append(f"- {diag}: {latest['response']} (as of {latest['date']})")
    
    prompt = f"""
**Comprehensive Patient Analysis - Booking {booking}**

**Patient Timeline:**
{timeline}

**Current Medications:**
{'\n'.join(current_meds) if current_meds else "None recorded"}

**Current Diagnoses:**
{'\n'.join(current_diags) if current_diags else "None recorded"}

**Analysis Instructions:**
1. Review the patient's complete history across all visits
2. Identify any potential missed diagnoses based on symptoms and test results
3. Check for medication conflicts or inappropriate prescriptions
4. Note any incomplete assessments or missing tests
5. Flag any urgent follow-up needs
6. Compare findings across different doctors for consistency

**Required Output Format:**
### Missed Diagnoses
[Potential diagnoses that were not identified]

### Medication Issues
[Conflicts, side effects, inappropriate prescriptions]

### Assessment Gaps
[Missing tests or incomplete evaluations]

### Follow-up Recommendations
[Urgent and non-urgent follow-up needs]

### Doctor Consistency
[Discrepancies between different providers]
"""
    return prompt

def chunk_patient_data(patient_data: Dict[str, Any]) -> List[Dict[str, Any]]:
    """Split patient data into manageable chunks"""
    chunks = []
    current_chunk = defaultdict(list)
    current_size = 0
    
    for booking, entries in patient_data['bookings'].items():
        booking_size = sum(estimate_tokens(str(e)) for e in entries)
        
        if current_size + booking_size > CHUNK_SIZE and current_chunk:
            chunks.append(dict(current_chunk))
            current_chunk = defaultdict(list)
            current_size = 0
            
        current_chunk['bookings'][booking] = entries
        current_size += booking_size
        
        # Add related data
        for med, med_entries in patient_data['medications'].items():
            if any(e['booking'] == booking for e in med_entries):
                current_chunk['medications'][med].extend(
                    e for e in med_entries if e['booking'] == booking
                )
        
        for diag, diag_entries in patient_data['diagnoses'].items():
            if any(e['booking'] == booking for e in diag_entries):
                current_chunk['diagnoses'][diag].extend(
                    e for e in diag_entries if e['booking'] == booking
                )
    
    if current_chunk:
        chunks.append(dict(current_chunk))
    
    return chunks

def init_agent():
    """Initialize TxAgent with proper configuration"""
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[],
    )
    agent.init_model()
    return agent

def analyze_with_agent(agent, prompt: str) -> str:
    """Run analysis with proper error handling"""
    try:
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, list):
                for r in result:
                    if hasattr(r, 'content') and r.content:
                        response += clean_response(r.content) + "\n"
            elif isinstance(result, str):
                response += clean_response(result) + "\n"
            elif hasattr(result, 'content'):
                response += clean_response(result.content) + "\n"
        
        return response.strip()
    except Exception as e:
        return f"Error in analysis: {str(e)}"

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
        gr.Markdown("# 🏥 Comprehensive Patient History Analysis")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Patient Excel File",
                            file_types=[".xlsx"],
                            file_count="single"
                        )
                        analysis_btn = gr.Button("Analyze Patient History", variant="primary")
                        status = gr.Markdown("Ready for analysis")
                    
                    with gr.Column(scale=2):
                        output_display = gr.Markdown(
                            label="Analysis Results",
                            elem_id="results"
                        )
                        report_download = gr.File(
                            label="Download Full Report",
                            interactive=False
                        )
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use This Tool
                
                1. **Upload Excel File**: Patient history Excel file
                2. **Click Analyze**: System will process all bookings
                3. **Review Results**: Comprehensive analysis appears
                4. **Download Report**: Full report with all findings
                
                ### Excel Requirements
                Must contain these columns:
                - Booking Number
                - Interview Date
                - Interviewer (Doctor)
                - Form Name
                - Form Item
                - Item Response
                - Description
                
                ### Analysis Includes:
                - Missed diagnoses across visits
                - Medication conflicts over time
                - Incomplete assessments
                - Doctor consistency checks
                - Follow-up recommendations
                """)
        
        def analyze_patient(file) -> Tuple[str, str]:
            if not file:
                raise gr.Error("Please upload an Excel file first")
            
            try:
                # Process Excel file
                df = pd.read_excel(file.name)
                patient_data = process_patient_data(df)
                
                # Generate and process prompts
                full_report = []
                bookings_processed = 0
                
                for booking in patient_data['bookings']:
                    prompt = generate_analysis_prompt(patient_data, booking)
                    response = analyze_with_agent(agent, prompt)
                    
                    if "Error in analysis" not in response:
                        bookings_processed += 1
                        full_report.append(f"## Booking {booking}\n{response}\n")
                    
                    yield "\n".join(full_report), None
                    time.sleep(0.1)  # Prevent UI freezing
                
                # Generate overall summary
                if bookings_processed > 1:
                    summary_prompt = """
**Comprehensive Patient Summary**

Analyze all bookings ({bookings_processed} total) to identify:
1. Patterns across the entire treatment history
2. Chronic issues that may have been missed
3. Medication changes over time
4. Doctor consistency across visits
5. Long-term recommendations

**Required Format:**
### Chronic Health Patterns
[Recurring issues over time]

### Treatment Evolution
[How treatment has changed]

### Long-term Concerns
[Issues needing ongoing attention]

### Comprehensive Recommendations
[Overall care plan]
""".format(bookings_processed=bookings_processed)
                    summary = analyze_with_agent(agent, summary_prompt)
                    full_report.append(f"## Overall Patient Summary\n{summary}\n")
                
                # Save report
                report_path = os.path.join(report_dir, f"patient_report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
                with open(report_path, 'w', encoding='utf-8') as f:
                    f.write("\n".join(full_report))
                
                yield "\n".join(full_report), report_path
                
            except Exception as e:
                raise gr.Error(f"Analysis failed: {str(e)}")
        
        analysis_btn.click(
            analyze_patient,
            inputs=file_upload,
            outputs=[output_display, report_download],
            api_name="analyze"
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        
        demo.queue(
            api_open=False,
            max_size=20
        ).launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True,
            allowed_paths=[report_dir],
            share=False
        )
    except Exception as e:
        print(f"Failed to launch application: {str(e)}")
        sys.exit(1)