File size: 8,373 Bytes
f75a23b
f394b25
d184610
a57b988
f394b25
1a611b9
d16299c
1c5bd8e
da7f195
 
 
 
1a611b9
 
da7f195
 
1a611b9
da7f195
 
 
 
 
d8282f1
1a611b9
f6e551c
 
 
 
a57b988
f6e551c
3ed8d49
 
4bfbcac
0fb33af
f75a23b
62ef904
8b1bbeb
1244d40
7a8204e
 
 
 
f6e551c
d16299c
 
 
f6e551c
d16299c
 
a57b988
 
 
7771dd9
1a611b9
 
 
 
 
 
 
 
 
ad85a12
1a611b9
 
 
 
 
 
 
 
 
8b1bbeb
7771dd9
1a611b9
 
 
ad85a12
3ed8d49
1a611b9
 
 
ad85a12
1a611b9
 
 
 
ad85a12
 
 
a57b988
7771dd9
0e6914c
7771dd9
 
 
 
 
3ed8d49
 
 
 
 
 
7771dd9
a57b988
 
de75e20
73810ec
 
1a611b9
de75e20
73810ec
 
1a611b9
 
73810ec
 
1a611b9
 
 
 
73810ec
1a611b9
de75e20
73810ec
7771dd9
1a611b9
 
 
 
 
 
 
 
 
73810ec
 
 
 
1a611b9
73810ec
1a611b9
 
 
 
 
 
 
 
 
 
 
 
 
 
a57b988
7771dd9
1a611b9
 
 
 
6762641
1a611b9
 
 
 
 
 
 
 
 
 
6762641
 
 
1a611b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7771dd9
 
1a611b9
 
7771dd9
 
 
 
 
 
 
1a611b9
7771dd9
1a611b9
a71a831
55e3db0
abd27cc
d8282f1
a57b988
 
1a611b9
d8282f1
1a611b9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Union, Generator, Dict, Any
import re
from datetime import datetime
import atexit
import torch.distributed as dist
import logging

# Logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# PyTorch cleanup
def cleanup():
    if dist.is_initialized():
        logger.info("Cleaning up PyTorch distributed process group")
        dist.destroy_process_group()
atexit.register(cleanup)

# Directories
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)
model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")
for d in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(d, exist_ok=True)
os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "src")))
from txagent.txagent import TxAgent

MAX_MODEL_TOKENS = 32768
MAX_CHUNK_TOKENS = 8192
MAX_NEW_TOKENS = 2048
PROMPT_OVERHEAD = 500

def clean_response(text: str) -> str:
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5 + 1

def extract_text_from_excel(file_obj: Union[str, Dict[str, Any]]) -> str:
    if isinstance(file_obj, dict) and 'name' in file_obj:
        file_path = file_obj['name']
    elif isinstance(file_obj, str):
        file_path = file_obj
    else:
        raise ValueError("Unsupported file input type")
    if not os.path.exists(file_path):
        raise FileNotFoundError(f"File not found: {file_path}")
    xls = pd.ExcelFile(file_path)
    all_text = []
    for sheet in xls.sheet_names:
        try:
            df = xls.parse(sheet).astype(str).fillna("")
            rows = df.apply(lambda r: " | ".join([c for c in r if c.strip()]), axis=1)
            sheet_text = [f"[{sheet}] {line}" for line in rows if line.strip()]
            all_text.extend(sheet_text)
        except Exception as e:
            logger.warning(f"Failed to parse {sheet}: {e}")
    return "\n".join(all_text)

def split_text_into_chunks(text: str) -> List[str]:
    lines = text.split("\n")
    chunks, current, current_tokens = [], [], 0
    max_tokens = MAX_CHUNK_TOKENS - PROMPT_OVERHEAD
    for line in lines:
        t = estimate_tokens(line)
        if current_tokens + t > max_tokens:
            chunks.append("\n".join(current))
            current, current_tokens = [line], t
        else:
            current.append(line)
            current_tokens += t
    if current:
        chunks.append("\n".join(current))
    return chunks

def build_prompt_from_text(chunk: str) -> str:
    return f"""
### Clinical Records Analysis

Please analyze these clinical notes and provide:
- Key diagnostic indicators
- Current medications and potential issues
- Recommended follow-up actions
- Any inconsistencies or concerns

---

{chunk}

---
Provide a structured response with clear medical reasoning.
"""

def validate_tool_file(tool_name: str, tool_path: str) -> bool:
    try:
        if not os.path.exists(tool_path):
            logger.error(f"Missing tool file: {tool_path}")
            return False
        with open(tool_path, 'r') as f:
            tool_data = json.load(f)
        if isinstance(tool_data, list):
            return all(isinstance(item, dict) and 'name' in item for item in tool_data)
        elif isinstance(tool_data, dict):
            if 'tools' in tool_data:
                return all(isinstance(item, dict) and 'name' in item for item in tool_data['tools'])
            return 'name' in tool_data
        logger.error(f"Invalid format in tool: {tool_name}")
        return False
    except Exception as e:
        logger.error(f"Error in {tool_name}: {e}")
        return False

def init_agent() -> TxAgent:
    new_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    if not os.path.exists(new_tool_path):
        with open(new_tool_path, 'w') as f:
            json.dump({
                "name": "new_tool",
                "description": "Default tool",
                "tools": [{"name": "dummy_tool", "description": "test", "version": "1.0"}]
            }, f)
    tool_files = {
        'opentarget': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/opentarget_tools.json',
        'fda_drug_label': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/fda_drug_labeling_tools.json',
        'special_tools': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/special_tools.json',
        'monarch': '/home/user/.pyenv/versions/3.10.17/lib/python3.10/site-packages/tooluniverse/data/monarch_tools.json',
        'new_tool': new_tool_path
    }
    valid_tools = {k: v for k, v in tool_files.items() if validate_tool_file(k, v)}
    if not valid_tools:
        raise ValueError("No valid tool files")
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict=valid_tools,
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100
    )
    agent.init_model()
    return agent

def stream_report(agent: TxAgent, input_file: Union[str, Dict[str, Any]], full_output: str) -> Generator[Tuple[str, Union[str, None], str], None, None]:
    accumulated = ""
    if input_file is None:
        yield "โŒ Upload an Excel file.", None, ""
        return
    try:
        text = extract_text_from_excel(input_file)
        chunks = split_text_into_chunks(text)
    except Exception as e:
        yield f"โŒ Error: {str(e)}", None, ""
        return
    for i, chunk in enumerate(chunks):
        prompt = build_prompt_from_text(chunk)
        result = ""
        for out in agent.run_gradio_chat(
            message=prompt, history=[], temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
            call_agent=False, conversation=[]
        ):
            result += out if isinstance(out, str) else out.content
        cleaned = clean_response(result)
        accumulated += f"\n\n๐Ÿ“„ Part {i+1}:\n{cleaned}"
        yield accumulated, None, ""
    summary_prompt = f"Summarize this analysis:\n\n{accumulated}"
    summary = ""
    for out in agent.run_gradio_chat(
        message=summary_prompt, history=[], temperature=0.2,
        max_new_tokens=MAX_NEW_TOKENS, max_token=MAX_MODEL_TOKENS,
        call_agent=False, conversation=[]
    ):
        summary += out if isinstance(out, str) else out.content
    final = clean_response(summary)
    report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
    with open(report_path, 'w') as f:
        f.write(f"# Clinical Report\n\n{final}")
    yield f"{accumulated}\n\n๐Ÿ“Š Final Summary:\n{final}", report_path, final

def create_ui(agent: TxAgent) -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# ๐Ÿฅ Clinical Records Analyzer")
        with gr.Row():
            file_upload = gr.File(label="Upload Excel File", file_types=[".xlsx"])
            analyze_btn = gr.Button("Analyze", variant="primary")
        with gr.Row():
            with gr.Column(scale=2):
                report_output = gr.Markdown()
            with gr.Column(scale=1):
                report_file = gr.File(label="Download", visible=False)
        full_output = gr.State()
        analyze_btn.click(fn=stream_report, inputs=[file_upload, full_output], outputs=[report_output, report_file, full_output])
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
    except Exception as e:
        logger.error(f"App error: {e}", exc_info=True)
        print(f"โŒ Application error: {e}", file=sys.stderr)
        sys.exit(1)