File size: 10,066 Bytes
f75a23b
f394b25
d184610
d16299c
f394b25
d16299c
a7e68bf
1244d40
d16299c
1c5bd8e
d16299c
d184610
d8282f1
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
f75a23b
d16299c
 
 
1244d40
 
 
1de8c2b
13ad0d3
 
 
 
f75a23b
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ad0d3
d16299c
 
 
 
 
 
 
13ad0d3
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e68bf
 
d16299c
 
 
a7e68bf
d16299c
 
 
13ad0d3
d16299c
13ad0d3
d16299c
13ad0d3
 
d16299c
 
1c5bd8e
13ad0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
d16299c
13ad0d3
 
 
 
 
d16299c
13ad0d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba3497
13ad0d3
1de8c2b
13ad0d3
 
 
4ba3497
13ad0d3
 
 
 
d16299c
13ad0d3
 
 
 
 
 
 
 
d16299c
 
d184610
d16299c
 
 
 
 
 
d8282f1
d16299c
 
 
 
 
 
 
 
13ad0d3
d16299c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ad0d3
d8282f1
4ba3497
d8282f1
 
 
d16299c
13ad0d3
a7e68bf
d16299c
d8282f1
13ad0d3
 
d8282f1
 
13ad0d3
 
d8282f1
 
 
13ad0d3
 
 
 
d184610
13ad0d3
1de8c2b
 
13ad0d3
1de8c2b
 
 
 
a7e68bf
d8282f1
13ad0d3
d16299c
13ad0d3
d16299c
 
 
 
13ad0d3
1de8c2b
d16299c
13ad0d3
 
d16299c
13ad0d3
1de8c2b
d16299c
13ad0d3
 
 
d16299c
13ad0d3
d16299c
13ad0d3
 
d16299c
 
1de8c2b
13ad0d3
d16299c
13ad0d3
d16299c
13ad0d3
 
d16299c
13ad0d3
d8282f1
 
a71a831
55e3db0
f394b25
d8282f1
d16299c
 
13ad0d3
d8282f1
 
13ad0d3
d8282f1
 
13ad0d3
d8282f1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import sys
import os
import pandas as pd
import json
import gradio as gr
from typing import List, Tuple, Dict, Any
import hashlib
import shutil
import re
from datetime import datetime
import time
from collections import defaultdict

# Configuration and setup
persistent_dir = "/data/hf_cache"
os.makedirs(persistent_dir, exist_ok=True)

model_cache_dir = os.path.join(persistent_dir, "txagent_models")
tool_cache_dir = os.path.join(persistent_dir, "tool_cache")
file_cache_dir = os.path.join(persistent_dir, "cache")
report_dir = os.path.join(persistent_dir, "reports")

for directory in [model_cache_dir, tool_cache_dir, file_cache_dir, report_dir]:
    os.makedirs(directory, exist_ok=True)

os.environ["HF_HOME"] = model_cache_dir
os.environ["TRANSFORMERS_CACHE"] = model_cache_dir

current_dir = os.path.dirname(os.path.abspath(__file__))
src_path = os.path.abspath(os.path.join(current_dir, "src"))
sys.path.insert(0, src_path)

from txagent.txagent import TxAgent

# Constants
MAX_TOKENS = 32768
CHUNK_SIZE = 10000
MAX_NEW_TOKENS = 2048
MAX_BOOKINGS_PER_CHUNK = 5

def file_hash(path: str) -> str:
    with open(path, "rb") as f:
        return hashlib.md5(f.read()).hexdigest()

def clean_response(text: str) -> str:
    try:
        text = text.encode('utf-8', 'surrogatepass').decode('utf-8')
    except UnicodeError:
        text = text.encode('utf-8', 'replace').decode('utf-8')
    
    text = re.sub(r"\[.*?\]|\bNone\b", "", text, flags=re.DOTALL)
    text = re.sub(r"\n{3,}", "\n\n", text)
    text = re.sub(r"[^\n#\-\*\w\s\.,:\(\)]+", "", text)
    return text.strip()

def estimate_tokens(text: str) -> int:
    return len(text) // 3.5

def process_patient_data(df: pd.DataFrame) -> Dict[str, Any]:
    data = {
        'bookings': defaultdict(list),
        'medications': defaultdict(list),
        'diagnoses': defaultdict(list),
        'tests': defaultdict(list),
        'procedures': defaultdict(list),
        'doctors': set(),
        'timeline': []
    }
    
    df = df.sort_values('Interview Date')
    for booking, group in df.groupby('Booking Number'):
        for _, row in group.iterrows():
            entry = {
                'booking': booking,
                'date': str(row['Interview Date']),
                'doctor': str(row['Interviewer']),
                'form': str(row['Form Name']),
                'item': str(row['Form Item']),
                'response': str(row['Item Response']),
                'notes': str(row['Description'])
            }
            
            data['bookings'][booking].append(entry)
            data['timeline'].append(entry)
            data['doctors'].add(entry['doctor'])
            
            form_lower = entry['form'].lower()
            if 'medication' in form_lower or 'drug' in form_lower:
                data['medications'][entry['item']].append(entry)
            elif 'diagnosis' in form_lower or 'condition' in form_lower:
                data['diagnoses'][entry['item']].append(entry)
            elif 'test' in form_lower or 'lab' in form_lower or 'result' in form_lower:
                data['tests'][entry['item']].append(entry)
            elif 'procedure' in form_lower or 'surgery' in form_lower:
                data['procedures'][entry['item']].append(entry)
    
    return data

def generate_analysis_prompt(patient_data: Dict[str, Any], bookings: List[str]) -> str:
    prompt_lines = [
        "**Comprehensive Patient Analysis**",
        f"Analyzing {len(bookings)} bookings",
        "",
        "**Key Analysis Points:**",
        "- Chronological progression of symptoms",
        "- Medication changes and interactions",
        "- Diagnostic consistency across providers",
        "- Missed diagnostic opportunities",
        "- Gaps in follow-up",
        "",
        "**Patient Timeline:**"
    ]
    
    for entry in patient_data['timeline']:
        if entry['booking'] in bookings:
            prompt_lines.append(
                f"- {entry['date']}: {entry['form']} - {entry['item']} = {entry['response']} (by {entry['doctor']})"
            )
    
    prompt_lines.extend([
        "",
        "**Medication History:**",
        *[f"- {med}: " + " → ".join(
            f"{e['date']}: {e['response']}" 
            for e in entries if e['booking'] in bookings
        ) for med, entries in patient_data['medications'].items()],
        "",
        "**Required Analysis Format:**",
        "### Diagnostic Patterns",
        "### Medication Analysis",
        "### Provider Consistency",
        "### Missed Opportunities",
        "### Recommendations"
    ])
    
    return "\n".join(prompt_lines)

def chunk_bookings(patient_data: Dict[str, Any]) -> List[List[str]]:
    all_bookings = list(patient_data['bookings'].keys())
    booking_sizes = []
    
    for booking in all_bookings:
        entries = patient_data['bookings'][booking]
        size = sum(estimate_tokens(str(e)) for e in entries)
        booking_sizes.append((booking, size))
    
    booking_sizes.sort(key=lambda x: x[1], reverse=True)
    chunks = [[] for _ in range(3)]
    chunk_sizes = [0, 0, 0]
    
    for booking, size in booking_sizes:
        min_chunk = chunk_sizes.index(min(chunk_sizes))
        chunks[min_chunk].append(booking)
        chunk_sizes[min_chunk] += size
    
    return chunks

def init_agent():
    default_tool_path = os.path.abspath("data/new_tool.json")
    target_tool_path = os.path.join(tool_cache_dir, "new_tool.json")
    
    if not os.path.exists(target_tool_path):
        shutil.copy(default_tool_path, target_tool_path)
    
    agent = TxAgent(
        model_name="mims-harvard/TxAgent-T1-Llama-3.1-8B",
        rag_model_name="mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B",
        tool_files_dict={"new_tool": target_tool_path},
        force_finish=True,
        enable_checker=True,
        step_rag_num=4,
        seed=100,
        additional_default_tools=[]
    )
    agent.init_model()
    return agent

def analyze_with_agent(agent, prompt: str) -> str:
    try:
        response = ""
        for result in agent.run_gradio_chat(
            message=prompt,
            history=[],
            temperature=0.2,
            max_new_tokens=MAX_NEW_TOKENS,
            max_token=MAX_TOKENS,
            call_agent=False,
            conversation=[],
        ):
            if isinstance(result, list):
                for r in result:
                    if hasattr(r, 'content') and r.content:
                        response += clean_response(r.content) + "\n"
            elif isinstance(result, str):
                response += clean_response(result) + "\n"
            elif hasattr(result, 'content'):
                response += clean_response(result.content) + "\n"
        
        return response.strip()
    except Exception as e:
        return f"Error in analysis: {str(e)}"

def create_ui(agent):
    with gr.Blocks(theme=gr.themes.Soft(), title="Patient History Analyzer") as demo:
        gr.Markdown("# 🏥 Patient History Analyzer")
        
        with gr.Tabs():
            with gr.TabItem("Analysis"):
                with gr.Row():
                    with gr.Column(scale=1):
                        file_upload = gr.File(
                            label="Upload Excel File",
                            file_types=[".xlsx"],
                            file_count="single"
                        )
                        analyze_btn = gr.Button("Analyze", variant="primary")
                        status = gr.Markdown("Ready")
                    
                    with gr.Column(scale=2):
                        output = gr.Markdown()
                        report = gr.File(label="Download Report")
            
            with gr.TabItem("Instructions"):
                gr.Markdown("""
                ## How to Use
                1. Upload patient history Excel
                2. Click Analyze
                3. View/download report
                
                **Required Columns:**
                - Booking Number
                - Interview Date
                - Interviewer
                - Form Name
                - Form Item
                - Item Response
                - Description
                """)
        
        def analyze(file):
            if not file:
                raise gr.Error("Please upload a file")
            
            try:
                df = pd.read_excel(file.name)
                patient_data = process_patient_data(df)
                chunks = chunk_bookings(patient_data)
                full_report = []
                
                for i, bookings in enumerate(chunks, 1):
                    prompt = generate_analysis_prompt(patient_data, bookings)
                    response = analyze_with_agent(agent, prompt)
                    full_report.append(f"## Chunk {i}\n{response}\n")
                    yield "\n".join(full_report), None
                
                # Final summary
                if len(chunks) > 1:
                    summary_prompt = "Create final summary combining all chunks"
                    summary = analyze_with_agent(agent, summary_prompt)
                    full_report.append(f"## Final Summary\n{summary}\n")
                
                report_path = os.path.join(report_dir, f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md")
                with open(report_path, 'w') as f:
                    f.write("\n".join(full_report))
                
                yield "\n".join(full_report), report_path
            
            except Exception as e:
                raise gr.Error(f"Error: {str(e)}")
        
        analyze_btn.click(
            analyze,
            inputs=file_upload,
            outputs=[output, report]
        )
    
    return demo

if __name__ == "__main__":
    try:
        agent = init_agent()
        demo = create_ui(agent)
        demo.launch(
            server_name="0.0.0.0",
            server_port=7860,
            show_error=True
        )
    except Exception as e:
        print(f"Error: {str(e)}")
        sys.exit(1)