File size: 7,964 Bytes
1777737
3a20a5b
728def5
 
3a20a5b
446fbec
dfe34bb
446fbec
841c3cb
 
0e7a2f6
dfe34bb
8505d49
1b3a021
8505d49
28560cd
dfe34bb
28560cd
 
 
446fbec
 
 
3a20a5b
41945fe
3a20a5b
41945fe
3a20a5b
 
ff7a915
446fbec
 
 
 
 
57d92c0
ff7a915
dfe34bb
5ff2c92
dfe34bb
28560cd
dfe34bb
28560cd
446fbec
28560cd
446fbec
dfe34bb
446fbec
 
28560cd
446fbec
 
 
 
 
 
57d92c0
446fbec
dfe34bb
5ff2c92
dfe34bb
1b3a021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfe34bb
3492c23
57d92c0
3a20a5b
edb2500
3a20a5b
 
 
 
 
 
 
774fd26
edb2500
28560cd
dfe34bb
4e4aafc
 
 
 
 
 
dfe34bb
4a6ed35
28560cd
57d92c0
 
adec3a7
dfe34bb
28560cd
 
 
 
 
 
 
 
 
 
 
 
5ff2c92
28560cd
15df552
28560cd
c87fc4e
57d92c0
edb2500
adec3a7
c87fc4e
1b3a021
 
c87fc4e
5ff2c92
1b3a021
15df552
5ff2c92
 
 
 
 
 
 
446fbec
5ff2c92
adec3a7
15df552
adec3a7
 
15df552
 
 
 
 
 
57d92c0
 
15df552
 
57d92c0
15df552
 
88317c7
3a20a5b
57d92c0
 
88317c7
3a20a5b
28560cd
3ae42d2
 
3a20a5b
3492c23
57d92c0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from typing import List

# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))

from txagent.txagent import TxAgent

def sanitize_utf8(text: str) -> str:
    return text.encode("utf-8", "ignore").decode("utf-8")

def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
    try:
        if not os.path.exists(file_path):
            return f"File not found: {file_path}"

        if progress:
            progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")

        if file_path.endswith(".csv"):
            df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
        elif file_path.endswith((".xls", ".xlsx")):
            df = pd.read_excel(file_path, engine="openpyxl")
        else:
            return f"Unsupported spreadsheet format: {file_path}"

        lines = []
        for _, row in df.iterrows():
            line = " | ".join(str(cell) for cell in row if pd.notna(cell))
            if line:
                lines.append(line)
        return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n".join(lines)

    except Exception as e:
        return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"

def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
    try:
        if not os.path.exists(file_path):
            return f"PDF not found: {file_path}"

        extracted = []
        with pdfplumber.open(file_path) as pdf:
            num_pages = len(pdf.pages)
            for i, page in enumerate(pdf.pages):
                try:
                    text = page.extract_text() or ""
                    extracted.append(text.strip())
                    if progress:
                        progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
                except Exception as e:
                    extracted.append(f"[Error reading page {i+1}]: {str(e)}")
        return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)

    except Exception as e:
        return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"

def chunk_text(text: str, max_tokens: int = 8192) -> List[str]:
    chunks = []
    words = text.split()
    chunk = []
    token_count = 0
    for word in words:
        token_count += len(word) // 4 + 1
        if token_count > max_tokens:
            chunks.append(" ".join(chunk))
            chunk = [word]
            token_count = len(word) // 4 + 1
        else:
            chunk.append(word)
    if chunk:
        chunks.append(" ".join(chunk))
    return chunks

def create_ui(agent: TxAgent):
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("<h1 style='text-align: center;'>\U0001F4CB CPS: Clinical Patient Support System</h1>")

        chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages", show_copy_button=True)
        file_upload = gr.File(
            label="Upload Medical File",
            file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
            file_count="multiple"
        )
        message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
        send_button = gr.Button("Send", variant="primary")
        conversation_state = gr.State([])

        def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
            context = (
                "You are an expert clinical AI assistant reviewing medical form or interview data. "
                "Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
                "Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
                "Ensure the output is informative and helpful for improving patient care. "
                "Do not hallucinate. Base the response only on the provided form content. "
                "End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed."
            )

            try:
                # Show centered loading message
                yield history + [{"role": "assistant", "content": "<div style='text-align:center'>⏳ Processing... Please wait while I analyze the files.</div>"}]

                extracted_text = ""
                if uploaded_files and isinstance(uploaded_files, list):
                    total_files = len(uploaded_files)
                    for index, file in enumerate(uploaded_files):
                        if not hasattr(file, 'name'):
                            continue
                        path = file.name
                        try:
                            if path.endswith((".csv", ".xls", ".xlsx")):
                                extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
                            elif path.endswith(".pdf"):
                                extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
                            else:
                                extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
                        except Exception as file_error:
                            extracted_text += f"[Error processing {os.path.basename(path)}]: {str(file_error)}\n"

                sanitized = sanitize_utf8(extracted_text.strip())
                chunks = chunk_text(sanitized)

                all_responses = ""
                for i, chunk in enumerate(chunks):
                    full_message = (
                        f"{context}\n\n--- Uploaded File Chunk {i+1}/{len(chunks)} ---\n\n{chunk}\n\n--- End of Chunk ---\n\nNow begin your reasoning:"
                    )
                    generator = agent.run_gradio_chat(
                        message=full_message,
                        history=[],
                        temperature=0.3,
                        max_new_tokens=1024,
                        max_token=8192,
                        call_agent=False,
                        conversation=conversation,
                        uploaded_files=uploaded_files,
                        max_round=30
                    )
                    for update in generator:
                        if isinstance(update, str):
                            all_responses += update

                all_responses = sanitize_utf8(all_responses.strip())
                final_history = history + [
                    {"role": "user", "content": message},
                    {"role": "assistant", "content": all_responses}
                ]
                yield final_history

            except Exception as chat_error:
                print(f"Chat error: {chat_error}")
                final_history = history + [
                    {"role": "user", "content": message},
                    {"role": "assistant", "content": "❌ An error occurred while processing your request."}
                ]
                yield final_history

        inputs = [message_input, chatbot, conversation_state, file_upload]
        send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
        message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)

        gr.Examples([
            ["Upload your medical form and ask what the doctor might've missed."],
            ["This patient was treated with antibiotics for UTI. What else should we check?"],
            ["Is there anything abnormal in the attached blood work report?"]
        ], inputs=message_input)

    return demo