File size: 7,964 Bytes
1777737 3a20a5b 728def5 3a20a5b 446fbec dfe34bb 446fbec 841c3cb 0e7a2f6 dfe34bb 8505d49 1b3a021 8505d49 28560cd dfe34bb 28560cd 446fbec 3a20a5b 41945fe 3a20a5b 41945fe 3a20a5b ff7a915 446fbec 57d92c0 ff7a915 dfe34bb 5ff2c92 dfe34bb 28560cd dfe34bb 28560cd 446fbec 28560cd 446fbec dfe34bb 446fbec 28560cd 446fbec 57d92c0 446fbec dfe34bb 5ff2c92 dfe34bb 1b3a021 dfe34bb 3492c23 57d92c0 3a20a5b edb2500 3a20a5b 774fd26 edb2500 28560cd dfe34bb 4e4aafc dfe34bb 4a6ed35 28560cd 57d92c0 adec3a7 dfe34bb 28560cd 5ff2c92 28560cd 15df552 28560cd c87fc4e 57d92c0 edb2500 adec3a7 c87fc4e 1b3a021 c87fc4e 5ff2c92 1b3a021 15df552 5ff2c92 446fbec 5ff2c92 adec3a7 15df552 adec3a7 15df552 57d92c0 15df552 57d92c0 15df552 88317c7 3a20a5b 57d92c0 88317c7 3a20a5b 28560cd 3ae42d2 3a20a5b 3492c23 57d92c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import sys
import os
import pandas as pd
import pdfplumber
import gradio as gr
from typing import List
# ✅ Fix: Add src to Python path
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src")))
from txagent.txagent import TxAgent
def sanitize_utf8(text: str) -> str:
return text.encode("utf-8", "ignore").decode("utf-8")
def extract_all_text_from_csv_or_excel(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"File not found: {file_path}"
if progress:
progress((index + 1) / total, desc=f"Reading spreadsheet: {os.path.basename(file_path)}")
if file_path.endswith(".csv"):
df = pd.read_csv(file_path, encoding="utf-8", errors="replace", low_memory=False)
elif file_path.endswith((".xls", ".xlsx")):
df = pd.read_excel(file_path, engine="openpyxl")
else:
return f"Unsupported spreadsheet format: {file_path}"
lines = []
for _, row in df.iterrows():
line = " | ".join(str(cell) for cell in row if pd.notna(cell))
if line:
lines.append(line)
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n".join(lines)
except Exception as e:
return f"[Error reading {os.path.basename(file_path)}]: {str(e)}"
def extract_all_text_from_pdf(file_path: str, progress=None, index=0, total=1) -> str:
try:
if not os.path.exists(file_path):
return f"PDF not found: {file_path}"
extracted = []
with pdfplumber.open(file_path) as pdf:
num_pages = len(pdf.pages)
for i, page in enumerate(pdf.pages):
try:
text = page.extract_text() or ""
extracted.append(text.strip())
if progress:
progress((index + (i / num_pages)) / total, desc=f"Reading PDF: {os.path.basename(file_path)} ({i+1}/{num_pages})")
except Exception as e:
extracted.append(f"[Error reading page {i+1}]: {str(e)}")
return f"\U0001F4C4 {os.path.basename(file_path)}\n\n" + "\n\n".join(extracted)
except Exception as e:
return f"[Error reading PDF {os.path.basename(file_path)}]: {str(e)}"
def chunk_text(text: str, max_tokens: int = 8192) -> List[str]:
chunks = []
words = text.split()
chunk = []
token_count = 0
for word in words:
token_count += len(word) // 4 + 1
if token_count > max_tokens:
chunks.append(" ".join(chunk))
chunk = [word]
token_count = len(word) // 4 + 1
else:
chunk.append(word)
if chunk:
chunks.append(" ".join(chunk))
return chunks
def create_ui(agent: TxAgent):
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("<h1 style='text-align: center;'>\U0001F4CB CPS: Clinical Patient Support System</h1>")
chatbot = gr.Chatbot(label="CPS Assistant", height=600, type="messages", show_copy_button=True)
file_upload = gr.File(
label="Upload Medical File",
file_types=[".pdf", ".txt", ".docx", ".jpg", ".png", ".csv", ".xls", ".xlsx"],
file_count="multiple"
)
message_input = gr.Textbox(placeholder="Ask a biomedical question or just upload the files...", show_label=False)
send_button = gr.Button("Send", variant="primary")
conversation_state = gr.State([])
def handle_chat(message: str, history: list, conversation: list, uploaded_files: list, progress=gr.Progress()):
context = (
"You are an expert clinical AI assistant reviewing medical form or interview data. "
"Your job is to analyze this data and reason about any information or red flags that a human doctor might have overlooked. "
"Provide a **detailed and structured response**, including examples, supporting evidence from the form, and clinical rationale for why these items matter. "
"Ensure the output is informative and helpful for improving patient care. "
"Do not hallucinate. Base the response only on the provided form content. "
"End with a section labeled '🧠 Final Analysis' where you summarize key findings the doctor may have missed."
)
try:
# Show centered loading message
yield history + [{"role": "assistant", "content": "<div style='text-align:center'>⏳ Processing... Please wait while I analyze the files.</div>"}]
extracted_text = ""
if uploaded_files and isinstance(uploaded_files, list):
total_files = len(uploaded_files)
for index, file in enumerate(uploaded_files):
if not hasattr(file, 'name'):
continue
path = file.name
try:
if path.endswith((".csv", ".xls", ".xlsx")):
extracted_text += extract_all_text_from_csv_or_excel(path, progress, index, total_files) + "\n"
elif path.endswith(".pdf"):
extracted_text += extract_all_text_from_pdf(path, progress, index, total_files) + "\n"
else:
extracted_text += f"(Uploaded file: {os.path.basename(path)})\n"
except Exception as file_error:
extracted_text += f"[Error processing {os.path.basename(path)}]: {str(file_error)}\n"
sanitized = sanitize_utf8(extracted_text.strip())
chunks = chunk_text(sanitized)
all_responses = ""
for i, chunk in enumerate(chunks):
full_message = (
f"{context}\n\n--- Uploaded File Chunk {i+1}/{len(chunks)} ---\n\n{chunk}\n\n--- End of Chunk ---\n\nNow begin your reasoning:"
)
generator = agent.run_gradio_chat(
message=full_message,
history=[],
temperature=0.3,
max_new_tokens=1024,
max_token=8192,
call_agent=False,
conversation=conversation,
uploaded_files=uploaded_files,
max_round=30
)
for update in generator:
if isinstance(update, str):
all_responses += update
all_responses = sanitize_utf8(all_responses.strip())
final_history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": all_responses}
]
yield final_history
except Exception as chat_error:
print(f"Chat error: {chat_error}")
final_history = history + [
{"role": "user", "content": message},
{"role": "assistant", "content": "❌ An error occurred while processing your request."}
]
yield final_history
inputs = [message_input, chatbot, conversation_state, file_upload]
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
gr.Examples([
["Upload your medical form and ask what the doctor might've missed."],
["This patient was treated with antibiotics for UTI. What else should we check?"],
["Is there anything abnormal in the attached blood work report?"]
], inputs=message_input)
return demo |