Spaces:
Sleeping
Sleeping
import datetime | |
import pandas as pd | |
import hopsworks | |
import os | |
os.environ['HOPSWORKS_PROJECT'] = os.getenv('HOPSWORKS_PROJECT') | |
os.environ['HOPSWORKS_API_KEY'] = os.getenv('HOPSWORKS_API_KEY') | |
project = hopsworks.login() | |
fs = project.get_feature_store() | |
def get_merged_dataframe(): | |
# Get data | |
monitor_fg = fs.get_or_create_feature_group( | |
name='aq_predictions', | |
description='Air Quality prediction monitoring', | |
version=1, | |
primary_key=['city','street','date','days_before_forecast_day'], | |
event_time="date" | |
) | |
air_quality_fg = fs.get_feature_group( | |
name='air_quality', | |
version=1, | |
) | |
selected_features = air_quality_fg.select_all(['pm25']) | |
selected_features = selected_features.read() | |
predicted_data = monitor_fg.read() | |
#filter columns | |
selected_features = selected_features[['date', 'pm25']] | |
predicted_data = predicted_data[['date','predicted_pm25']] | |
predicted_data = predicted_data.rename(columns={"predicted_pm25" : "pm25"}) | |
predicted_data = predicted_data.sort_values(by=['date'], ascending=True) | |
#merge the dataframes | |
selected_features = selected_features.reset_index(drop=True) | |
predicted_data = predicted_data.reset_index(drop=True) | |
combined_df = pd.concat([selected_features, predicted_data], axis=0, ignore_index=True) | |
combined_df['date'] = pd.to_datetime(combined_df['date'], utc=True).dt.tz_convert(None).astype('datetime64[ns]') | |
return combined_df | |
print(get_merged_dataframe()) |