Spaces:
Sleeping
Sleeping
File size: 1,525 Bytes
8e296e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import datetime
import pandas as pd
import hopsworks
import os
os.environ['HOPSWORKS_PROJECT'] = os.getenv('HOPSWORKS_PROJECT')
os.environ['HOPSWORKS_API_KEY'] = os.getenv('HOPSWORKS_API_KEY')
project = hopsworks.login()
fs = project.get_feature_store()
def get_merged_dataframe():
# Get data
monitor_fg = fs.get_or_create_feature_group(
name='aq_predictions',
description='Air Quality prediction monitoring',
version=1,
primary_key=['city','street','date','days_before_forecast_day'],
event_time="date"
)
air_quality_fg = fs.get_feature_group(
name='air_quality',
version=1,
)
selected_features = air_quality_fg.select_all(['pm25'])
selected_features = selected_features.read()
predicted_data = monitor_fg.read()
#filter columns
selected_features = selected_features[['date', 'pm25']]
predicted_data = predicted_data[['date','predicted_pm25']]
predicted_data = predicted_data.rename(columns={"predicted_pm25" : "pm25"})
predicted_data = predicted_data.sort_values(by=['date'], ascending=True)
#merge the dataframes
selected_features = selected_features.reset_index(drop=True)
predicted_data = predicted_data.reset_index(drop=True)
combined_df = pd.concat([selected_features, predicted_data], axis=0, ignore_index=True)
combined_df['date'] = pd.to_datetime(combined_df['date'], utc=True).dt.tz_convert(None).astype('datetime64[ns]')
return combined_df
print(get_merged_dataframe()) |