import datetime import pandas as pd import hopsworks import os os.environ['HOPSWORKS_PROJECT'] = os.getenv('HOPSWORKS_PROJECT') os.environ['HOPSWORKS_API_KEY'] = os.getenv('HOPSWORKS_API_KEY') project = hopsworks.login() fs = project.get_feature_store() def get_merged_dataframe(): # Get data monitor_fg = fs.get_or_create_feature_group( name='aq_predictions', description='Air Quality prediction monitoring', version=1, primary_key=['city','street','date','days_before_forecast_day'], event_time="date" ) air_quality_fg = fs.get_feature_group( name='air_quality', version=1, ) selected_features = air_quality_fg.select_all(['pm25']) selected_features = selected_features.read() predicted_data = monitor_fg.read() #filter columns selected_features = selected_features[['date', 'pm25']] predicted_data = predicted_data[['date','predicted_pm25']] predicted_data = predicted_data.rename(columns={"predicted_pm25" : "pm25"}) predicted_data = predicted_data.sort_values(by=['date'], ascending=True) #merge the dataframes selected_features = selected_features.reset_index(drop=True) predicted_data = predicted_data.reset_index(drop=True) combined_df = pd.concat([selected_features, predicted_data], axis=0, ignore_index=True) combined_df['date'] = pd.to_datetime(combined_df['date'], utc=True).dt.tz_convert(None).astype('datetime64[ns]') return combined_df print(get_merged_dataframe())