Renjith95's picture
Update app.py (#1)
453eab3 verified
raw
history blame
3.01 kB
import os
import gradio as gr
from transformers import TextStreamer
from peft import PeftModel
from unsloth import FastLanguageModel
# Load your model and tokenizer
model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name
auth_token = os.getenv("HF_TOKEN") # Now this should work
# print("Auth token:", auth_token) # To verify it's loaded
# Loading the base model and applying the local adapter.
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/mistral-7b-bnb-4bit",
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
"unsloth/llama-2-7b-bnb-4bit",
"unsloth/llama-2-13b-bnb-4bit",
"unsloth/codellama-34b-bnb-4bit",
"unsloth/tinyllama-bnb-4bit",
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
"unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token)
FastLanguageModel.for_inference(model)
# tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token)
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(message, history):
messages = []
for user_msg, assistant_msg in history:
messages.append({"role": "user", "content": user_msg})
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": message})
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids=inputs,
max_new_tokens=512,
use_cache=True,
temperature=0.7,
top_p=0.95,
)
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
return response
demo = gr.ChatInterface(
respond,
title="Renj Chatbot",
description="Ask me anything about my portfolio and projects."
)
if __name__ == "__main__":
demo.launch(share = True)