Spaces:
Runtime error
Runtime error
Update app.py (#1)
Browse files- Update app.py (b6ee23968a399cc65b48c89292ffe93da8744bb2)
app.py
CHANGED
@@ -1,23 +1,50 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
from
|
4 |
-
from
|
5 |
-
import
|
|
|
6 |
# Load your model and tokenizer
|
7 |
model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name
|
8 |
-
auth_token = os.getenv("HF_TOKEN")
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
|
|
|
|
|
|
13 |
"""
|
14 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
15 |
"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
20 |
-
messages = [{"role": "system", "content": system_message}]
|
21 |
for user_msg, assistant_msg in history:
|
22 |
messages.append({"role": "user", "content": user_msg})
|
23 |
messages.append({"role": "assistant", "content": assistant_msg})
|
@@ -32,35 +59,20 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
32 |
|
33 |
outputs = model.generate(
|
34 |
input_ids=inputs,
|
35 |
-
max_new_tokens=
|
36 |
use_cache=True,
|
37 |
-
temperature=
|
38 |
-
top_p=
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
yield response
|
45 |
-
"""
|
46 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
47 |
-
"""
|
48 |
demo = gr.ChatInterface(
|
49 |
respond,
|
50 |
-
|
51 |
-
|
52 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
53 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
54 |
-
gr.Slider(
|
55 |
-
minimum=0.1,
|
56 |
-
maximum=1.0,
|
57 |
-
value=0.95,
|
58 |
-
step=0.05,
|
59 |
-
label="Top-p (nucleus sampling)",
|
60 |
-
),
|
61 |
-
],
|
62 |
)
|
63 |
|
64 |
-
|
65 |
if __name__ == "__main__":
|
66 |
demo.launch(share = True)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
from transformers import TextStreamer
|
4 |
+
from peft import PeftModel
|
5 |
+
from unsloth import FastLanguageModel
|
6 |
+
|
7 |
# Load your model and tokenizer
|
8 |
model_name = "Renjith95/renj-portfolio-finetuned-model" # Replace with your model name
|
9 |
+
auth_token = os.getenv("HF_TOKEN") # Now this should work
|
10 |
+
# print("Auth token:", auth_token) # To verify it's loaded
|
11 |
+
|
12 |
+
# Loading the base model and applying the local adapter.
|
13 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
14 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
15 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
16 |
+
|
17 |
+
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
|
18 |
+
fourbit_models = [
|
19 |
+
"unsloth/mistral-7b-bnb-4bit",
|
20 |
+
"unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
|
21 |
+
"unsloth/llama-2-7b-bnb-4bit",
|
22 |
+
"unsloth/llama-2-13b-bnb-4bit",
|
23 |
+
"unsloth/codellama-34b-bnb-4bit",
|
24 |
+
"unsloth/tinyllama-bnb-4bit",
|
25 |
+
"unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
|
26 |
+
"unsloth/gemma-2b-bnb-4bit",
|
27 |
+
] # More models at https://huggingface.co/unsloth
|
28 |
+
|
29 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
30 |
+
model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
|
31 |
+
max_seq_length = max_seq_length,
|
32 |
+
dtype = dtype,
|
33 |
+
load_in_4bit = load_in_4bit,
|
34 |
+
token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf
|
35 |
+
)
|
36 |
+
model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token)
|
37 |
+
FastLanguageModel.for_inference(model)
|
38 |
|
39 |
|
40 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
|
41 |
+
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token)
|
42 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
43 |
"""
|
44 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
45 |
"""
|
46 |
+
def respond(message, history):
|
47 |
+
messages = []
|
|
|
|
|
|
|
48 |
for user_msg, assistant_msg in history:
|
49 |
messages.append({"role": "user", "content": user_msg})
|
50 |
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
59 |
|
60 |
outputs = model.generate(
|
61 |
input_ids=inputs,
|
62 |
+
max_new_tokens=512,
|
63 |
use_cache=True,
|
64 |
+
temperature=0.7,
|
65 |
+
top_p=0.95,
|
66 |
)
|
67 |
+
|
68 |
+
response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
69 |
+
return response
|
70 |
+
|
|
|
|
|
|
|
|
|
71 |
demo = gr.ChatInterface(
|
72 |
respond,
|
73 |
+
title="Renj Chatbot",
|
74 |
+
description="Ask me anything about my portfolio and projects."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
)
|
76 |
|
|
|
77 |
if __name__ == "__main__":
|
78 |
demo.launch(share = True)
|