File size: 3,014 Bytes
c5a91ee
bffceb3
453eab3
 
 
 
c5a91ee
 
453eab3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a91ee
bffceb3
453eab3
 
 
bffceb3
 
 
453eab3
 
c5a91ee
 
 
bffceb3
 
c5a91ee
bffceb3
c5a91ee
 
 
 
 
 
 
453eab3
c5a91ee
453eab3
 
c5a91ee
453eab3
 
 
 
bffceb3
 
453eab3
 
bffceb3
 
 
910698f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import gradio as gr
from transformers import TextStreamer
from peft import PeftModel
from unsloth import FastLanguageModel

# Load your model and tokenizer
model_name = "Renjith95/renj-portfolio-finetuned-model"  # Replace with your model name
auth_token = os.getenv("HF_TOKEN")   # Now this should work
# print("Auth token:", auth_token)  # To verify it's loaded

# Loading the base model and applying the local adapter.
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.

# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
    "unsloth/mistral-7b-bnb-4bit",
    "unsloth/mistral-7b-instruct-v0.2-bnb-4bit",
    "unsloth/llama-2-7b-bnb-4bit",
    "unsloth/llama-2-13b-bnb-4bit",
    "unsloth/codellama-34b-bnb-4bit",
    "unsloth/tinyllama-bnb-4bit",
    "unsloth/gemma-7b-bnb-4bit", # New Google 6 trillion tokens model 2.5x faster!
    "unsloth/gemma-2b-bnb-4bit",
] # More models at https://huggingface.co/unsloth

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/mistral-7b-instruct-v0.3-bnb-4bit", # Choose ANY! eg teknium/OpenHermes-2.5-Mistral-7B
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit,
    token = auth_token, # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = PeftModel.from_pretrained(model, "Renjith95/renj-portfolio-finetuned-adapter", use_auth_token=auth_token)
FastLanguageModel.for_inference(model)


# tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
# model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_auth_token=auth_token)
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(message, history):
    messages = []
    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    inputs = tokenizer.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_tensors="pt"
    ).to(model.device)

    outputs = model.generate(
        input_ids=inputs,
        max_new_tokens=512,
        use_cache=True,
        temperature=0.7,
        top_p=0.95,
    )

    response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
    return response

demo = gr.ChatInterface(
    respond,
    title="Renj Chatbot",
    description="Ask me anything about my portfolio and projects."
)

if __name__ == "__main__":
    demo.launch(share = True)