Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import tensorflow as tf | |
| from transformers import pipeline | |
| from textblob import TextBlob | |
| classifier = pipeline(task="sentiment-analysis") | |
| textIn = st.text_input("Input Text Here:", "I really like the color of your car!") | |
| option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'textblob', '')) | |
| st.write('You selected:', option) | |
| # pipeline | |
| preds = classifier(textIn) | |
| preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] | |
| st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score']) | |
| # textblob | |
| polarity = TextBlob(textIn).sentiment.polarity | |
| sentiment = '' | |
| if score < 0: | |
| sentiment = 'Negative' | |
| elif score == 0: | |
| sentiment = 'Neutral' | |
| else: | |
| sentiment = 'Positive' | |
| st.write('According to textblob, input text is ', sentiment, ' with a polarity (subjectivity score) of ', polarity) | |
| # def getAnalysis(score): | |
| # if score < 0: | |
| # return 'Negative' | |
| # elif score == 0: | |
| # return 'Neutral' | |
| # else: | |
| # return 'Positive' | |
| # df['polarity'] = df[text].apply(textblob_polarity) | |
| # df['classification'] = df['polarity'].apply(getAnalysis) | |