import streamlit as st import tensorflow as tf from transformers import pipeline from textblob import TextBlob classifier = pipeline(task="sentiment-analysis") textIn = st.text_input("Input Text Here:", "I really like the color of your car!") option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'textblob', '')) st.write('You selected:', option) # pipeline preds = classifier(textIn) preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score']) # textblob polarity = TextBlob(textIn).sentiment.polarity sentiment = '' if score < 0: sentiment = 'Negative' elif score == 0: sentiment = 'Neutral' else: sentiment = 'Positive' st.write('According to textblob, input text is ', sentiment, ' with a polarity (subjectivity score) of ', polarity) # def getAnalysis(score): # if score < 0: # return 'Negative' # elif score == 0: # return 'Neutral' # else: # return 'Positive' # df['polarity'] = df[text].apply(textblob_polarity) # df['classification'] = df['polarity'].apply(getAnalysis)