Jeffrey Rathgeber Jr commited on
Commit
cfa2b70
·
unverified ·
1 Parent(s): 7749ef6

testblob tester

Browse files
Files changed (1) hide show
  1. app.py +26 -3
app.py CHANGED
@@ -1,17 +1,40 @@
1
  import streamlit as st
2
  import tensorflow as tf
3
  from transformers import pipeline
4
- # import numpy as np
5
 
6
  classifier = pipeline(task="sentiment-analysis")
7
 
8
  textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
9
 
10
- option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('TensorFlow', 'PyTorch', 'JAX'))
11
 
12
  st.write('You selected:', option)
13
 
14
  # pipeline
15
  preds = classifier(textIn)
16
  preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
17
- st.write('Input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import tensorflow as tf
3
  from transformers import pipeline
4
+ from textblob import TextBlob
5
 
6
  classifier = pipeline(task="sentiment-analysis")
7
 
8
  textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
9
 
10
+ option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'textblob', ''))
11
 
12
  st.write('You selected:', option)
13
 
14
  # pipeline
15
  preds = classifier(textIn)
16
  preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
17
+ st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])
18
+
19
+ # textblob
20
+ polarity = TextBlob(textIn).sentiment.polarity
21
+ sentiment = ''
22
+ if score < 0:
23
+ sentiment = 'Negative'
24
+ elif score == 0:
25
+ sentiment = 'Neutral'
26
+ else:
27
+ sentiment = 'Positive'
28
+ st.write('According to textblob, input text is ', sentiment, ' with a polarity (subjectivity score) of ', polarity)
29
+
30
+
31
+ # def getAnalysis(score):
32
+ # if score < 0:
33
+ # return 'Negative'
34
+ # elif score == 0:
35
+ # return 'Neutral'
36
+ # else:
37
+ # return 'Positive'
38
+ # df['polarity'] = df[text].apply(textblob_polarity)
39
+ # df['classification'] = df['polarity'].apply(getAnalysis)
40
+