File size: 1,158 Bytes
35f56ba
7749ef6
47ef74f
cfa2b70
d71bb22
47ef74f
e43f53b
47ef74f
 
2f0457f
c704d04
 
47ef74f
d5b90e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85516be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
import tensorflow as tf
from transformers import pipeline
from textblob import TextBlob

classifier = pipeline(task="sentiment-analysis")

textIn = st.text_input("Input Text Here:", "I really like the color of your car!")

option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob'))

st.write('You selected:', option)


if option == 'Pipeline':
    # pipeline
    preds = classifier(textIn)
    preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
    st.write('According to Pipeline, input text is ', preds[0]['label'], ' with a confidence of ', preds[0]['score'])

if option == 'TextBlob':
    # textblob
    polarity = TextBlob(textIn).sentiment.polarity
    subjectivity = TextBlob(textIn).sentiment.subjectivity
    sentiment = ''
    if polarity < 0:
        sentiment = 'Negative'
    elif polarity == 0:
        sentiment = 'Neutral'
    else:
        sentiment = 'Positive'

    st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)