Jeffrey Rathgeber Jr commited on
Commit
85516be
·
unverified ·
1 Parent(s): d5b90e7

vader test

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -2,12 +2,13 @@ import streamlit as st
2
  import tensorflow as tf
3
  from transformers import pipeline
4
  from textblob import TextBlob
 
5
 
6
  classifier = pipeline(task="sentiment-analysis")
7
 
8
  textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
9
 
10
- option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', ''))
11
 
12
  st.write('You selected:', option)
13
 
@@ -30,5 +31,9 @@ if option == 'TextBlob':
30
  else:
31
  sentiment = 'Positive'
32
 
33
- st.write('According to textblob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
34
 
 
 
 
 
 
2
  import tensorflow as tf
3
  from transformers import pipeline
4
  from textblob import TextBlob
5
+ from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
6
 
7
  classifier = pipeline(task="sentiment-analysis")
8
 
9
  textIn = st.text_input("Input Text Here:", "I really like the color of your car!")
10
 
11
+ option = st.selectbox('Which pre-trained model would you like for your sentiment analysis?',('Pipeline', 'TextBlob', 'Vader'))
12
 
13
  st.write('You selected:', option)
14
 
 
31
  else:
32
  sentiment = 'Positive'
33
 
34
+ st.write('According to TextBlob, input text is ', sentiment, ' and a subjectivity score (from 0 being objective to 1 being subjective) of ', subjectivity)
35
 
36
+ if option == 'Vader':
37
+ # vader
38
+ sentiment = SentimentIntensityAnalyzer().polarity_scores(textIn)['compound']
39
+ st.write('According to Vader, input text is ', sentiment)