Spaces:
Runtime error
Runtime error
import os | |
import multiprocessing | |
from generate_prompts import generate_prompt | |
from diffusers import AutoPipelineForText2Image | |
from io import BytesIO | |
import gradio as gr | |
import json | |
# Define a global variable to hold the model | |
model = None | |
def initialize_model(): | |
global model | |
if model is None: # Ensure the model is loaded only once per process | |
print("Loading the model...") | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
print("Model loaded successfully.") | |
def generate_image(prompt, prompt_name): | |
try: | |
print(f"Generating response for {prompt_name} with prompt: {prompt}") | |
output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
print(f"Output for {prompt_name}: {output}") | |
# Check if the model returned images | |
if isinstance(output.images, list) and len(output.images) > 0: | |
image = output.images[0] | |
buffered = BytesIO() | |
try: | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
print(f"Image bytes length for {prompt_name}: {len(image_bytes)}") | |
return prompt_name, image_bytes | |
except Exception as e: | |
print(f"Error saving image for {prompt_name}: {e}") | |
return prompt_name, None | |
else: | |
raise Exception(f"No images returned by the model for {prompt_name}.") | |
except Exception as e: | |
print(f"Error generating image for {prompt_name}: {e}") | |
return prompt_name, None | |
def process_prompts(sentence_mapping, character_dict, selected_style): | |
print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") | |
prompts = [] | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}") | |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) | |
prompts.append((paragraph_number, prompt)) | |
print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") | |
num_prompts = len(prompts) | |
print(f"Number of prompts: {num_prompts}") | |
# Limit the number of worker processes to the number of prompts | |
with multiprocessing.Pool(processes=num_prompts, initializer=initialize_model) as pool: | |
tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts] | |
results = pool.starmap(generate_image, tasks) | |
images = {prompt_name: image for prompt_name, image in results} | |
print(f"Images generated: {images}") | |
return images | |
def process_prompt(sentence_mapping, character_dict, selected_style): | |
print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") | |
# Check if inputs are already in dict form | |
if isinstance(sentence_mapping, str): | |
sentence_mapping = json.loads(sentence_mapping) | |
if isinstance(character_dict, str): | |
character_dict = json.loads(character_dict) | |
return process_prompts(sentence_mapping, character_dict, selected_style) | |
gradio_interface = gr.Interface( | |
fn=process_prompt, | |
inputs=[ | |
gr.JSON(label="Sentence Mapping"), | |
gr.JSON(label="Character Dict"), | |
gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") | |
], | |
outputs="json" | |
) | |
if __name__ == "__main__": | |
print("Launching Gradio interface...") | |
gradio_interface.launch() | |
print("Gradio interface launched.") | |