import os import multiprocessing from generate_prompts import generate_prompt from diffusers import AutoPipelineForText2Image from io import BytesIO import gradio as gr import json # Define a global variable to hold the model model = None def initialize_model(): global model if model is None: # Ensure the model is loaded only once per process print("Loading the model...") model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") print("Model loaded successfully.") def generate_image(prompt, prompt_name): try: print(f"Generating response for {prompt_name} with prompt: {prompt}") output = model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) print(f"Output for {prompt_name}: {output}") # Check if the model returned images if isinstance(output.images, list) and len(output.images) > 0: image = output.images[0] buffered = BytesIO() try: image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() print(f"Image bytes length for {prompt_name}: {len(image_bytes)}") return prompt_name, image_bytes except Exception as e: print(f"Error saving image for {prompt_name}: {e}") return prompt_name, None else: raise Exception(f"No images returned by the model for {prompt_name}.") except Exception as e: print(f"Error generating image for {prompt_name}: {e}") return prompt_name, None def process_prompts(sentence_mapping, character_dict, selected_style): print(f"process_prompts called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) print(f"combined_sentence for paragraph {paragraph_number}: {combined_sentence}") prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) print(f"Generated prompt for paragraph {paragraph_number}: {prompt}") num_prompts = len(prompts) print(f"Number of prompts: {num_prompts}") # Limit the number of worker processes to the number of prompts with multiprocessing.Pool(processes=num_prompts, initializer=initialize_model) as pool: tasks = [(prompt, f"Prompt {paragraph_number}") for paragraph_number, prompt in prompts] results = pool.starmap(generate_image, tasks) images = {prompt_name: image for prompt_name, image in results} print(f"Images generated: {images}") return images def process_prompt(sentence_mapping, character_dict, selected_style): print(f"process_prompt called with sentence_mapping: {sentence_mapping}, character_dict: {character_dict}, selected_style: {selected_style}") # Check if inputs are already in dict form if isinstance(sentence_mapping, str): sentence_mapping = json.loads(sentence_mapping) if isinstance(character_dict, str): character_dict = json.loads(character_dict) return process_prompts(sentence_mapping, character_dict, selected_style) gradio_interface = gr.Interface( fn=process_prompt, inputs=[ gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style") ], outputs="json" ) if __name__ == "__main__": print("Launching Gradio interface...") gradio_interface.launch() print("Gradio interface launched.")