Spaces:
Runtime error
Runtime error
import os | |
import asyncio | |
import concurrent.futures | |
from io import BytesIO | |
from diffusers import AutoPipelineForText2Image | |
import gradio as gr | |
from generate_prompts import generate_prompt | |
# Initialize model globally | |
model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
def generate_image(prompt, prompt_name): | |
""" | |
Generates an image based on the provided prompt. | |
Parameters: | |
- prompt (str): The input text for image generation. | |
- prompt_name (str): A name for the prompt, used for logging. | |
Returns: | |
bytes: The generated image data in bytes format, or None if generation fails. | |
""" | |
try: | |
print(f"Generating image for {prompt_name}") | |
output = model(prompt=prompt, num_inference_steps=50, guidance_scale=7.5) | |
if isinstance(output.images, list) and len(output.images) > 0: | |
image = output.images[0] | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
return image_bytes | |
else: | |
return None | |
except Exception as e: | |
print(f"An error occurred while generating image for {prompt_name}: {e}") | |
return None | |
async def queue_api_calls(sentence_mapping, character_dict, selected_style): | |
""" | |
Generates images for all provided prompts in parallel using ProcessPoolExecutor. | |
Parameters: | |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences. | |
- character_dict (dict): Dictionary mapping characters to their descriptions. | |
- selected_style (str): Selected illustration style. | |
Returns: | |
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. | |
""" | |
prompts = [] | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) | |
prompts.append((paragraph_number, prompt)) | |
loop = asyncio.get_running_loop() | |
with concurrent.futures.ProcessPoolExecutor() as pool: | |
tasks = [ | |
loop.run_in_executor(pool, generate_image, prompt, f"Prompt {paragraph_number}") | |
for paragraph_number, prompt in prompts | |
] | |
responses = await asyncio.gather(*tasks) | |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} | |
return images | |
def process_prompt(sentence_mapping, character_dict, selected_style): | |
""" | |
Processes the provided prompts and generates images. | |
Parameters: | |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences. | |
- character_dict (dict): Dictionary mapping characters to their descriptions. | |
- selected_style (str): Selected illustration style. | |
Returns: | |
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. | |
""" | |
try: | |
loop = asyncio.get_running_loop() | |
except RuntimeError: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) | |
return cmpt_return | |
gradio_interface = gr.Interface( | |
fn=process_prompt, | |
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")], | |
outputs="json" | |
).queue(default_concurrency_limit=20) # Set concurrency limit if needed | |
if __name__ == "__main__": | |
gradio_interface.launch() | |