text2image_1 / app.py
RanM's picture
Update app.py
28413d5 verified
raw
history blame
3.87 kB
import os
import asyncio
import time
from generate_prompts import generate_prompt
from diffusers import AutoPipelineForText2Image
from io import BytesIO
import gradio as gr
import ray
ray.init()
@ray.remote
class ModelActor:
def __init__(self):
"""
Initializes the ModelActor class and loads the text-to-image model.
"""
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo")
async def generate_image(self, prompt, prompt_name):
"""
Generates an image based on the provided prompt.
Parameters:
- prompt (str): The input text for image generation.
- prompt_name (str): A name for the prompt, used for logging.
Returns:
bytes: The generated image data in bytes format, or None if generation fails.
"""
start_time = time.time()
process_id = os.getpid()
try:
output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0)
if isinstance(output.images, list) and len(output.images) > 0:
image = output.images[0]
buffered = BytesIO()
image.save(buffered, format="JPEG")
image_bytes = buffered.getvalue()
end_time = time.time()
return image_bytes
else:
return None
except Exception as e:
return None
async def queue_api_calls(sentence_mapping, character_dict, selected_style):
"""
Generates images for all provided prompts in parallel using Ray actors.
Parameters:
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
- character_dict (dict): Dictionary mapping characters to their descriptions.
- selected_style (str): Selected illustration style.
Returns:
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
"""
prompts = []
for paragraph_number, sentences in sentence_mapping.items():
combined_sentence = " ".join(sentences)
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style)
prompts.append((paragraph_number, prompt))
num_prompts = len(prompts)
num_actors = min(num_prompts, 20)
model_actors = [ModelActor.remote() for _ in range(num_actors)]
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)]
responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks])
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)}
return images
def process_prompt(sentence_mapping, character_dict, selected_style):
"""
Processes the provided prompts and generates images.
Parameters:
- sentence_mapping (dict): Mapping between paragraph numbers and sentences.
- character_dict (dict): Dictionary mapping characters to their descriptions.
- selected_style (str): Selected illustration style.
Returns:
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format.
"""
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style))
return cmpt_return
gradio_interface = gr.Interface(
fn=process_prompt,
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")],
outputs="json"
)
if __name__ == "__main__":
gradio_interface.launch()