Spaces:
Runtime error
Runtime error
import os | |
import asyncio | |
import time | |
from generate_prompts import generate_prompt | |
from diffusers import AutoPipelineForText2Image | |
from io import BytesIO | |
import gradio as gr | |
import ray | |
ray.init() | |
class ModelActor: | |
def __init__(self): | |
""" | |
Initializes the ModelActor class and loads the text-to-image model. | |
""" | |
self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") | |
async def generate_image(self, prompt, prompt_name): | |
""" | |
Generates an image based on the provided prompt. | |
Parameters: | |
- prompt (str): The input text for image generation. | |
- prompt_name (str): A name for the prompt, used for logging. | |
Returns: | |
bytes: The generated image data in bytes format, or None if generation fails. | |
""" | |
start_time = time.time() | |
process_id = os.getpid() | |
try: | |
output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) | |
if isinstance(output.images, list) and len(output.images) > 0: | |
image = output.images[0] | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
image_bytes = buffered.getvalue() | |
end_time = time.time() | |
return image_bytes | |
else: | |
return None | |
except Exception as e: | |
return None | |
async def queue_api_calls(sentence_mapping, character_dict, selected_style): | |
""" | |
Generates images for all provided prompts in parallel using Ray actors. | |
Parameters: | |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences. | |
- character_dict (dict): Dictionary mapping characters to their descriptions. | |
- selected_style (str): Selected illustration style. | |
Returns: | |
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. | |
""" | |
prompts = [] | |
for paragraph_number, sentences in sentence_mapping.items(): | |
combined_sentence = " ".join(sentences) | |
prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) | |
prompts.append((paragraph_number, prompt)) | |
num_prompts = len(prompts) | |
num_actors = min(num_prompts, 20) | |
model_actors = [ModelActor.remote() for _ in range(num_actors)] | |
tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)] | |
responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks]) | |
images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} | |
return images | |
def process_prompt(sentence_mapping, character_dict, selected_style): | |
""" | |
Processes the provided prompts and generates images. | |
Parameters: | |
- sentence_mapping (dict): Mapping between paragraph numbers and sentences. | |
- character_dict (dict): Dictionary mapping characters to their descriptions. | |
- selected_style (str): Selected illustration style. | |
Returns: | |
dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. | |
""" | |
try: | |
loop = asyncio.get_running_loop() | |
except RuntimeError: | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) | |
return cmpt_return | |
gradio_interface = gr.Interface( | |
fn=process_prompt, | |
inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")], | |
outputs="json" | |
) | |
if __name__ == "__main__": | |
gradio_interface.launch() | |