import os import asyncio import time from generate_prompts import generate_prompt from diffusers import AutoPipelineForText2Image from io import BytesIO import gradio as gr import ray ray.init() @ray.remote class ModelActor: def __init__(self): """ Initializes the ModelActor class and loads the text-to-image model. """ self.model = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo") async def generate_image(self, prompt, prompt_name): """ Generates an image based on the provided prompt. Parameters: - prompt (str): The input text for image generation. - prompt_name (str): A name for the prompt, used for logging. Returns: bytes: The generated image data in bytes format, or None if generation fails. """ start_time = time.time() process_id = os.getpid() try: output = await self.model(prompt=prompt, num_inference_steps=1, guidance_scale=0.0) if isinstance(output.images, list) and len(output.images) > 0: image = output.images[0] buffered = BytesIO() image.save(buffered, format="JPEG") image_bytes = buffered.getvalue() end_time = time.time() return image_bytes else: return None except Exception as e: return None async def queue_api_calls(sentence_mapping, character_dict, selected_style): """ Generates images for all provided prompts in parallel using Ray actors. Parameters: - sentence_mapping (dict): Mapping between paragraph numbers and sentences. - character_dict (dict): Dictionary mapping characters to their descriptions. - selected_style (str): Selected illustration style. Returns: dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. """ prompts = [] for paragraph_number, sentences in sentence_mapping.items(): combined_sentence = " ".join(sentences) prompt = generate_prompt(combined_sentence, sentence_mapping, character_dict, selected_style) prompts.append((paragraph_number, prompt)) num_prompts = len(prompts) num_actors = min(num_prompts, 20) model_actors = [ModelActor.remote() for _ in range(num_actors)] tasks = [model_actors[i % num_actors].generate_image.remote(prompt, f"Prompt {paragraph_number}") for i, (paragraph_number, prompt) in enumerate(prompts)] responses = await asyncio.gather(*[asyncio.to_thread(ray.get, task) for task in tasks]) images = {paragraph_number: response for (paragraph_number, _), response in zip(prompts, responses)} return images def process_prompt(sentence_mapping, character_dict, selected_style): """ Processes the provided prompts and generates images. Parameters: - sentence_mapping (dict): Mapping between paragraph numbers and sentences. - character_dict (dict): Dictionary mapping characters to their descriptions. - selected_style (str): Selected illustration style. Returns: dict: A dictionary where keys are paragraph numbers and values are image data in bytes format. """ try: loop = asyncio.get_running_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) cmpt_return = loop.run_until_complete(queue_api_calls(sentence_mapping, character_dict, selected_style)) return cmpt_return gradio_interface = gr.Interface( fn=process_prompt, inputs=[gr.JSON(label="Sentence Mapping"), gr.JSON(label="Character Dict"), gr.Dropdown(["oil painting", "sketch", "watercolor"], label="Selected Style")], outputs="json" ) if __name__ == "__main__": gradio_interface.launch()