Spaces:
Runtime error
Runtime error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import mediapipe as mp | |
from sklearn.linear_model import LinearRegression | |
import random | |
import pickle | |
# Setup for Face Mesh detection | |
mp_face_mesh = mp.solutions.face_mesh | |
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) | |
# Function to extract color features from the image | |
def extract_features(image, landmarks): | |
red_channel = image[:, :, 2] | |
green_channel = image[:, :, 1] | |
blue_channel = image[:, :, 0] | |
red_percent = 100 * np.mean(red_channel) / 255 | |
green_percent = 100 * np.mean(green_channel) / 255 | |
blue_percent = 100 * np.mean(blue_channel) / 255 | |
return [red_percent, green_percent, blue_percent] | |
# Mock models training (for demonstration) | |
def train_model(output_range): | |
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2), | |
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), | |
random.uniform(0.2, 0.5)] for _ in range(100)] | |
y = [random.uniform(*output_range) for _ in X] | |
model = LinearRegression().fit(X, y) | |
return model | |
# Load pre-trained models for Hemoglobin, SPO2, and Heart Rate using pickle | |
with open("hemoglobin_model_from_anemia_dataset.pkl", "rb") as f: | |
hemoglobin_model = pickle.load(f) | |
with open("spo2_model_simulated.pkl", "rb") as f: | |
spo2_model = pickle.load(f) | |
with open("heart_rate_model.pkl", "rb") as f: | |
hr_model = pickle.load(f) | |
# Model dictionary setup for other tests | |
models = { | |
"Hemoglobin": hemoglobin_model, | |
"WBC Count": train_model((4.0, 11.0)), | |
"Platelet Count": train_model((150, 450)), | |
"Iron": train_model((60, 170)), | |
"Ferritin": train_model((30, 300)), | |
"TIBC": train_model((250, 400)), | |
"Bilirubin": train_model((0.3, 1.2)), | |
"Creatinine": train_model((0.6, 1.2)), | |
"Urea": train_model((7, 20)), | |
"Sodium": train_model((135, 145)), | |
"Potassium": train_model((3.5, 5.1)), | |
"TSH": train_model((0.4, 4.0)), | |
"Cortisol": train_model((5, 25)), | |
"FBS": train_model((70, 110)), | |
"HbA1c": train_model((4.0, 5.7)), | |
"Albumin": train_model((3.5, 5.5)), | |
"BP Systolic": train_model((90, 120)), | |
"BP Diastolic": train_model((60, 80)), | |
"Temperature": train_model((97, 99)) | |
} | |
# Function to determine risk level | |
def get_risk_color(value, normal_range): | |
low, high = normal_range | |
if value < low: | |
return ("Low", "🔻", "#FFCCCC") | |
elif value > high: | |
return ("High", "🔺", "#FFE680") | |
else: | |
return ("Normal", "✅", "#CCFFCC") | |
# Function to build an HTML table for displaying test results | |
def build_table(title, rows): | |
html = ( | |
f'<div style="margin-bottom: 24px;">' | |
f'<h4 style="margin: 8px 0;">{title}</h4>' | |
f'<table style="width:100%; border-collapse:collapse;">' | |
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>' | |
) | |
for label, value, ref in rows: | |
level, icon, bg = get_risk_color(value, ref) | |
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} – {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>' | |
html += '</tbody></table></div>' | |
return html | |
# Analyzing image for health metrics | |
def analyze_image(image): | |
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
result = face_mesh.process(frame_rgb) | |
if not result.multi_face_landmarks: | |
return "<div style='color:red;'>⚠️ Face not detected in image.</div>", frame_rgb | |
landmarks = result.multi_face_landmarks[0].landmark | |
features = extract_features(frame_rgb, landmarks) | |
test_values = {} | |
r2_scores = {} | |
for label in models: | |
if label == "Hemoglobin": | |
prediction = models[label].predict([features])[0] | |
test_values[label] = prediction | |
r2_scores[label] = hemoglobin_r2 | |
else: | |
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0] | |
test_values[label] = value | |
r2_scores[label] = 0.0 # simulate other 7D inputs | |
html_output = "".join([ | |
f'<div style="font-size:14px;color:#888;margin-bottom:10px;">Hemoglobin R² Score: {r2_scores.get("Hemoglobin", "NA"):.2f}</div>', | |
build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), ("WBC Count", test_values["WBC Count"], (4.0, 11.0)), ("Platelet Count", test_values["Platelet Count"], (150, 450))]), | |
build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)), ("Ferritin", test_values["Ferritin"], (30, 300)), ("TIBC", test_values["TIBC"], (250, 400))]), | |
build_table("🧬 Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)), ("Creatinine", test_values["Creatinine"], (0.6, 1.2)), ("Urea", test_values["Urea"], (7, 20))]), | |
build_table("🧪 Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)), ("Potassium", test_values["Potassium"], (3.5, 5.1))]), | |
build_table("🧁 Metabolic & Thyroid", [("FBS", test_values["FBS"], (70, 110)), ("HbA1c", test_values["HbA1c"], (4.0, 5.7)), ("TSH", test_values["TSH"], (0.4, 4.0))]), | |
build_table("❤️ Vitals", [("SpO2", test_values["SpO2"], (95, 100)), ("Heart Rate", test_values["Heart Rate"], (60, 100)), ("Temperature", test_values["Temperature"], (97, 99)), ("BP Systolic", test_values["BP Systolic"], (90, 120))]), | |
]) | |
return html_output, frame_rgb | |
# Gradio Interface setup | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
# 🧠 Face-Based Lab Test AI Report (Image Mode) | |
Upload a face image to infer health diagnostics using AI-based analysis. | |
""") | |
with gr.Row(): | |
image_input = gr.Image(type="numpy", label="📸 Upload Face Image") | |
submit_btn = gr.Button("🔍 Analyze") | |
with gr.Column(): | |
result_html = gr.HTML(label="🧪 Health Report Table") | |
result_image = gr.Image(label="📷 Key Frame Snapshot") | |
submit_btn.click(fn=analyze_image, inputs=image_input, outputs=[result_html, result_image]) | |
gr.Markdown("""--- | |
✅ Table Format • AI Prediction • Dynamic Summary""") | |
demo.launch() | |