Spaces:
Runtime error
Runtime error
File size: 6,587 Bytes
0983def eb3d3f0 9905bc8 c3d57ff eb3d3f0 420f765 eb3d3f0 0983def eb3d3f0 420f765 9905bc8 39eef5a 71a8976 39eef5a 9905bc8 420f765 9905bc8 360e696 9905bc8 c3d57ff f04f718 420f765 9905bc8 31ad924 9905bc8 420f765 7e2c1f5 accfefd 7e2c1f5 accfefd 7e2c1f5 accfefd 420f765 9e64c66 9905bc8 9e64c66 19e69ba 1974ae8 420f765 1974ae8 19e69ba 1974ae8 19e69ba 1974ae8 19e69ba 420f765 19e69ba 1974ae8 19e69ba 1974ae8 10c366b 1974ae8 f8f4a14 fcb6cb8 1974ae8 19e69ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import pickle
# Setup for Face Mesh detection
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5)
# Function to extract color features from the image
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
# Mock models training (for demonstration)
def train_model(output_range):
X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load pre-trained models for Hemoglobin, SPO2, and Heart Rate using pickle
with open("hemoglobin_model_from_anemia_dataset.pkl", "rb") as f:
hemoglobin_model = pickle.load(f)
with open("spo2_model_simulated.pkl", "rb") as f:
spo2_model = pickle.load(f)
with open("heart_rate_model.pkl", "rb") as f:
hr_model = pickle.load(f)
# Model dictionary setup for other tests
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Function to determine risk level
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "🔻", "#FFCCCC")
elif value > high:
return ("High", "🔺", "#FFE680")
else:
return ("Normal", "✅", "#CCFFCC")
# Function to build an HTML table for displaying test results
def build_table(title, rows):
html = (
f'<div style="margin-bottom: 24px;">'
f'<h4 style="margin: 8px 0;">{title}</h4>'
f'<table style="width:100%; border-collapse:collapse;">'
f'<thead><tr style="background:#f0f0f0;"><th style="padding:8px;border:1px solid #ccc;">Test</th><th style="padding:8px;border:1px solid #ccc;">Result</th><th style="padding:8px;border:1px solid #ccc;">Expected Range</th><th style="padding:8px;border:1px solid #ccc;">Level</th></tr></thead><tbody>'
)
for label, value, ref in rows:
level, icon, bg = get_risk_color(value, ref)
html += f'<tr style="background:{bg};"><td style="padding:6px;border:1px solid #ccc;">{label}</td><td style="padding:6px;border:1px solid #ccc;">{value:.2f}</td><td style="padding:6px;border:1px solid #ccc;">{ref[0]} – {ref[1]}</td><td style="padding:6px;border:1px solid #ccc;">{icon} {level}</td></tr>'
html += '</tbody></table></div>'
return html
# Analyzing image for health metrics
def analyze_image(image):
frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "<div style='color:red;'>⚠️ Face not detected in image.</div>", frame_rgb
landmarks = result.multi_face_landmarks[0].landmark
features = extract_features(frame_rgb, landmarks)
test_values = {}
r2_scores = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict([features])[0]
test_values[label] = prediction
r2_scores[label] = hemoglobin_r2
else:
value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
r2_scores[label] = 0.0 # simulate other 7D inputs
html_output = "".join([
f'<div style="font-size:14px;color:#888;margin-bottom:10px;">Hemoglobin R² Score: {r2_scores.get("Hemoglobin", "NA"):.2f}</div>',
build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), ("WBC Count", test_values["WBC Count"], (4.0, 11.0)), ("Platelet Count", test_values["Platelet Count"], (150, 450))]),
build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)), ("Ferritin", test_values["Ferritin"], (30, 300)), ("TIBC", test_values["TIBC"], (250, 400))]),
build_table("🧬 Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)), ("Creatinine", test_values["Creatinine"], (0.6, 1.2)), ("Urea", test_values["Urea"], (7, 20))]),
build_table("🧪 Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)), ("Potassium", test_values["Potassium"], (3.5, 5.1))]),
build_table("🧁 Metabolic & Thyroid", [("FBS", test_values["FBS"], (70, 110)), ("HbA1c", test_values["HbA1c"], (4.0, 5.7)), ("TSH", test_values["TSH"], (0.4, 4.0))]),
build_table("❤️ Vitals", [("SpO2", test_values["SpO2"], (95, 100)), ("Heart Rate", test_values["Heart Rate"], (60, 100)), ("Temperature", test_values["Temperature"], (97, 99)), ("BP Systolic", test_values["BP Systolic"], (90, 120))]),
])
return html_output, frame_rgb
# Gradio Interface setup
with gr.Blocks() as demo:
gr.Markdown("""
# 🧠 Face-Based Lab Test AI Report (Image Mode)
Upload a face image to infer health diagnostics using AI-based analysis.
""")
with gr.Row():
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
submit_btn = gr.Button("🔍 Analyze")
with gr.Column():
result_html = gr.HTML(label="🧪 Health Report Table")
result_image = gr.Image(label="📷 Key Frame Snapshot")
submit_btn.click(fn=analyze_image, inputs=image_input, outputs=[result_html, result_image])
gr.Markdown("""---
✅ Table Format • AI Prediction • Dynamic Summary""")
demo.launch()
|