import gradio as gr import cv2 import numpy as np import mediapipe as mp from sklearn.linear_model import LinearRegression import random import pickle # Setup for Face Mesh detection mp_face_mesh = mp.solutions.face_mesh face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True, max_num_faces=1, refine_landmarks=True, min_detection_confidence=0.5) # Function to extract color features from the image def extract_features(image, landmarks): red_channel = image[:, :, 2] green_channel = image[:, :, 1] blue_channel = image[:, :, 0] red_percent = 100 * np.mean(red_channel) / 255 green_percent = 100 * np.mean(green_channel) / 255 blue_percent = 100 * np.mean(blue_channel) / 255 return [red_percent, green_percent, blue_percent] # Mock models training (for demonstration) def train_model(output_range): X = [[random.uniform(0.2, 0.5), random.uniform(0.05, 0.2), random.uniform(0.05, 0.2), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5), random.uniform(0.2, 0.5)] for _ in range(100)] y = [random.uniform(*output_range) for _ in X] model = LinearRegression().fit(X, y) return model # Load pre-trained models for Hemoglobin, SPO2, and Heart Rate using pickle with open("hemoglobin_model_from_anemia_dataset.pkl", "rb") as f: hemoglobin_model = pickle.load(f) with open("spo2_model_simulated.pkl", "rb") as f: spo2_model = pickle.load(f) with open("heart_rate_model.pkl", "rb") as f: hr_model = pickle.load(f) # Model dictionary setup for other tests models = { "Hemoglobin": hemoglobin_model, "WBC Count": train_model((4.0, 11.0)), "Platelet Count": train_model((150, 450)), "Iron": train_model((60, 170)), "Ferritin": train_model((30, 300)), "TIBC": train_model((250, 400)), "Bilirubin": train_model((0.3, 1.2)), "Creatinine": train_model((0.6, 1.2)), "Urea": train_model((7, 20)), "Sodium": train_model((135, 145)), "Potassium": train_model((3.5, 5.1)), "TSH": train_model((0.4, 4.0)), "Cortisol": train_model((5, 25)), "FBS": train_model((70, 110)), "HbA1c": train_model((4.0, 5.7)), "Albumin": train_model((3.5, 5.5)), "BP Systolic": train_model((90, 120)), "BP Diastolic": train_model((60, 80)), "Temperature": train_model((97, 99)) } # Function to determine risk level def get_risk_color(value, normal_range): low, high = normal_range if value < low: return ("Low", "🔻", "#FFCCCC") elif value > high: return ("High", "🔺", "#FFE680") else: return ("Normal", "✅", "#CCFFCC") # Function to build an HTML table for displaying test results def build_table(title, rows): html = ( f'
' f'

{title}

' f'' f'' ) for label, value, ref in rows: level, icon, bg = get_risk_color(value, ref) html += f'' html += '
TestResultExpected RangeLevel
{label}{value:.2f}{ref[0]} – {ref[1]}{icon} {level}
' return html # Analyzing image for health metrics def analyze_image(image): frame_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) result = face_mesh.process(frame_rgb) if not result.multi_face_landmarks: return "
⚠️ Face not detected in image.
", frame_rgb landmarks = result.multi_face_landmarks[0].landmark features = extract_features(frame_rgb, landmarks) test_values = {} r2_scores = {} for label in models: if label == "Hemoglobin": prediction = models[label].predict([features])[0] test_values[label] = prediction r2_scores[label] = hemoglobin_r2 else: value = models[label].predict([[random.uniform(0.2, 0.5) for _ in range(7)]])[0] test_values[label] = value r2_scores[label] = 0.0 # simulate other 7D inputs html_output = "".join([ f'
Hemoglobin R² Score: {r2_scores.get("Hemoglobin", "NA"):.2f}
', build_table("🩸 Hematology", [("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)), ("WBC Count", test_values["WBC Count"], (4.0, 11.0)), ("Platelet Count", test_values["Platelet Count"], (150, 450))]), build_table("🧬 Iron Panel", [("Iron", test_values["Iron"], (60, 170)), ("Ferritin", test_values["Ferritin"], (30, 300)), ("TIBC", test_values["TIBC"], (250, 400))]), build_table("🧬 Liver & Kidney", [("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)), ("Creatinine", test_values["Creatinine"], (0.6, 1.2)), ("Urea", test_values["Urea"], (7, 20))]), build_table("🧪 Electrolytes", [("Sodium", test_values["Sodium"], (135, 145)), ("Potassium", test_values["Potassium"], (3.5, 5.1))]), build_table("🧁 Metabolic & Thyroid", [("FBS", test_values["FBS"], (70, 110)), ("HbA1c", test_values["HbA1c"], (4.0, 5.7)), ("TSH", test_values["TSH"], (0.4, 4.0))]), build_table("❤️ Vitals", [("SpO2", test_values["SpO2"], (95, 100)), ("Heart Rate", test_values["Heart Rate"], (60, 100)), ("Temperature", test_values["Temperature"], (97, 99)), ("BP Systolic", test_values["BP Systolic"], (90, 120))]), ]) return html_output, frame_rgb # Gradio Interface setup with gr.Blocks() as demo: gr.Markdown(""" # 🧠 Face-Based Lab Test AI Report (Image Mode) Upload a face image to infer health diagnostics using AI-based analysis. """) with gr.Row(): image_input = gr.Image(type="numpy", label="📸 Upload Face Image") submit_btn = gr.Button("🔍 Analyze") with gr.Column(): result_html = gr.HTML(label="🧪 Health Report Table") result_image = gr.Image(label="📷 Key Frame Snapshot") submit_btn.click(fn=analyze_image, inputs=image_input, outputs=[result_html, result_image]) gr.Markdown("""--- ✅ Table Format • AI Prediction • Dynamic Summary""") demo.launch()