Spaces:
Sleeping
Sleeping
File size: 17,410 Bytes
0983def eb3d3f0 9905bc8 70542c8 c10f508 bbb2285 6e4efc6 eb3d3f0 70542c8 eb3d3f0 0827283 70542c8 9905bc8 39eef5a 71a8976 39eef5a 9905bc8 0827283 9905bc8 0827283 9905bc8 0827283 70542c8 0827283 99ab13b 0827283 f04f718 9905bc8 31ad924 9905bc8 0827283 70542c8 7e2c1f5 0827283 7e2c1f5 0827283 7e2c1f5 0827283 accfefd 70542c8 9e64c66 0827283 9e64c66 0827283 9e64c66 0827283 9e64c66 19e69ba 0827283 c10f508 6e4efc6 bbb2285 0827283 19e69ba 0827283 19e69ba c10f508 c70bbd2 122f3d4 c10f508 e674980 f04f718 94e0da7 e674980 c10f508 f04f718 70542c8 e674980 0827283 f04f718 0827283 94e0da7 46d6884 0827283 122f3d4 46d6884 9161fde f04f718 0827283 f04f718 19e69ba 94e0da7 0827283 94e0da7 70542c8 94e0da7 e6d165e 0827283 6e4efc6 19e69ba 0827283 6e4efc6 0827283 70542c8 19e69ba 70542c8 19e69ba bdf9b37 0827283 10c366b 0827283 f8f4a14 bdf9b37 19e69ba 9161fde 6e4efc6 0827283 f8f4a14 0827283 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gradio as gr
import cv2
import numpy as np
import mediapipe as mp
from sklearn.linear_model import LinearRegression
import random
import base64
import joblib
import pandas as pd
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas
from io import BytesIO
# Initialize the face mesh model
mp_face_mesh = mp.solutions.face_mesh
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=True,
max_num_faces=1,
refine_landmarks=True,
min_detection_confidence=0.5)
# Functions for feature extraction
def extract_features(image, landmarks):
red_channel = image[:, :, 2]
green_channel = image[:, :, 1]
blue_channel = image[:, :, 0]
red_percent = 100 * np.mean(red_channel) / 255
green_percent = 100 * np.mean(green_channel) / 255
blue_percent = 100 * np.mean(blue_channel) / 255
return [red_percent, green_percent, blue_percent]
def train_model(output_range):
X = [[
random.uniform(0.2, 0.5),
random.uniform(0.05, 0.2),
random.uniform(0.05, 0.2),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5),
random.uniform(0.2, 0.5)
] for _ in range(100)]
y = [random.uniform(*output_range) for _ in X]
model = LinearRegression().fit(X, y)
return model
# Load models
try:
hemoglobin_model = joblib.load("hemoglobin_model_from_anemia_dataset.pkl")
spo2_model = joblib.load("spo2_model_simulated.pkl")
hr_model = joblib.load("heart_rate_model.pkl")
except FileNotFoundError:
print("Error: One or more .pkl model files are missing. Please upload them.")
exit(1)
models = {
"Hemoglobin": hemoglobin_model,
"WBC Count": train_model((4.0, 11.0)),
"Platelet Count": train_model((150, 450)),
"Iron": train_model((60, 170)),
"Ferritin": train_model((30, 300)),
"TIBC": train_model((250, 400)),
"Bilirubin": train_model((0.3, 1.2)),
"Creatinine": train_model((0.6, 1.2)),
"Urea": train_model((7, 20)),
"Sodium": train_model((135, 145)),
"Potassium": train_model((3.5, 5.1)),
"TSH": train_model((0.4, 4.0)),
"Cortisol": train_model((5, 25)),
"FBS": train_model((70, 110)),
"HbA1c": train_model((4.0, 5.7)),
"Albumin": train_model((3.5, 5.5)),
"BP Systolic": train_model((90, 120)),
"BP Diastolic": train_model((60, 80)),
"Temperature": train_model((97, 99))
}
# Helper function for risk level color coding
def get_risk_color(value, normal_range):
low, high = normal_range
if value < low:
return ("Low", "🔻", "#fff3cd")
elif value > high:
return ("High", "🔺", "#f8d7da")
else:
return ("Normal", "✅", "#d4edda")
# Function to build table for test results
def build_table(title, rows):
html = (
f'<div style="margin-bottom: 25px; border-radius: 8px; overflow: hidden; border: 1px solid #e0e0e0;">'
f'<div style="background: linear-gradient(135deg, #f5f7fa, #c3cfe2); padding: 12px 16px; border-bottom: 1px solid #e0e0e0;">'
f'<h4 style="margin: 0; color: #2c3e50; font-size: 16px; font-weight: 600;">{title}</h4>'
f'</div>'
f'<table style="width:100%; border-collapse:collapse; background: white;">'
f'<thead><tr style="background:#f8f9fa;"><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:left;font-size:13px;">Test</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Result</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Range</th><th style="padding:12px 8px;border-bottom:2px solid #dee2e6;color:#495057;font-weight:600;text-align:center;font-size:13px;">Level</th></tr></thead><tbody>'
)
for i, (label, value, ref) in enumerate(rows):
level, icon, bg = get_risk_color(value, ref)
row_bg = "#f8f9fa" if i % 2 == 0 else "white"
if level != "Normal":
row_bg = bg
# Format the value with appropriate units
if "Count" in label or "Platelet" in label:
value_str = f"{value:.0f}"
else:
value_str = f"{value:.2f}"
html += f'<tr style="background:{row_bg};border-bottom:1px solid #e9ecef;"><td style="padding:10px 8px;color:#2c3e50;font-weight:500;">{label}</td><td style="padding:10px 8px;text-align:center;color:#2c3e50;font-weight:600;">{value_str}</td><td style="padding:10px 8px;text-align:center;color:#6c757d;font-size:12px;">{ref[0]} - {ref[1]}</td><td style="padding:10px 8px;text-align:center;font-weight:600;color:{"#28a745" if level == "Normal" else "#dc3545" if level == "High" else "#ffc107"};">{icon} {level}</td></tr>'
html += '</tbody></table></div>'
return html
# Build health card layout
def build_health_card(profile_image, test_results, summary, patient_name="", patient_age="", patient_gender="", patient_id=""):
from datetime import datetime
current_date = datetime.now().strftime("%B %d, %Y")
html = f"""
<div id="health-card" style="font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; max-width: 700px; margin: 20px auto; border-radius: 16px; background: linear-gradient(135deg, #e3f2fd 0%, #f3e5f5 100%); border: 2px solid #ddd; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.15); padding: 30px; color: #1a1a1a;">
<div style="background-color: rgba(255, 255, 255, 0.9); border-radius: 12px; padding: 20px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
<div style="display: flex; align-items: center; margin-bottom: 15px;">
<div style="background: linear-gradient(135deg, #64b5f6, #42a5f5); padding: 8px 16px; border-radius: 8px; margin-right: 20px;">
<h3 style="margin: 0; font-size: 16px; color: white; font-weight: 600;">HEALTH CARD</h3>
</div>
<div style="margin-left: auto; text-align: right; color: #666; font-size: 12px;">
<div>Report Date: {current_date}</div>
{f'<div>Patient ID: {patient_id}</div>' if patient_id else ''}
</div>
</div>
<div style="display: flex; align-items: center;">
<img src="data:image/png;base64,{profile_image}" alt="Profile" style="width: 90px; height: 90px; border-radius: 50%; margin-right: 20px; border: 3px solid #fff; box-shadow: 0 4px 12px rgba(0,0,0,0.1);">
<div>
<h2 style="margin: 0; font-size: 28px; color: #2c3e50; font-weight: 700;">{patient_name if patient_name else "Lab Test Results"}</h2>
<p style="margin: 4px 0 0 0; color: #666; font-size: 14px;">{f"Age: {patient_age} | Gender: {patient_gender}" if patient_age and patient_gender else "AI-Generated Health Analysis"}</p>
<p style="margin: 4px 0 0 0; color: #888; font-size: 12px;">Face-Based Health Analysis Report</p>
</div>
</div>
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); border-radius: 12px; padding: 25px; margin-bottom: 25px; border: 1px solid #e0e0e0;">
{test_results['Hematology']}
{test_results['Iron Panel']}
{test_results['Liver & Kidney']}
{test_results['Electrolytes']}
{test_results['Vitals']}
</div>
<div style="background-color: rgba(255, 255, 255, 0.95); padding: 20px; border-radius: 12px; border: 1px solid #e0e0e0; margin-bottom: 25px;">
<h4 style="margin: 0 0 15px 0; color: #2c3e50; font-size: 18px; font-weight: 600;">📝 Summary & Recommendations</h4>
<div style="color: #444; line-height: 1.6;">
{summary}
</div>
</div>
<div style="display: flex; gap: 15px; justify-content: center; flex-wrap: wrap;">
<button onclick="window.print()" style="padding: 12px 24px; background: linear-gradient(135deg, #4caf50, #45a049); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(76, 175, 80, 0.3); transition: all 0.3s;">
📥 Download Report
</button>
<button style="padding: 12px 24px; background: linear-gradient(135deg, #2196f3, #1976d2); color: white; border: none; border-radius: 8px; cursor: pointer; font-weight: 600; font-size: 14px; box-shadow: 0 4px 12px rgba(33, 150, 243, 0.3);">
📞 Find Labs Near Me
</button>
</div>
</div>
<style>
@media print {{
body * {{
visibility: hidden;
}}
#health-card, #health-card * {{
visibility: visible;
}}
#health-card {{
position: absolute;
left: 0;
top: 0;
width: 100% !important;
max-width: none !important;
margin: 0 !important;
box-shadow: none !important;
border: none !important;
}}
button {{
display: none !important;
}}
}}
</style>
"""
return html
# Function to generate PDF from HTML content using reportlab
def generate_pdf(html_content):
buffer = BytesIO()
c = canvas.Canvas(buffer, pagesize=letter)
# Adding basic content to PDF (you can modify this to match your layout)
text = c.beginText(40, 750)
text.setFont("Helvetica", 12)
text.textLines(html_content) # Add the content
c.drawText(text)
c.showPage()
c.save()
buffer.seek(0)
return buffer
# Modified analyze_face function
def analyze_face(input_data):
if isinstance(input_data, str): # Video input (file path in Replit)
cap = cv2.VideoCapture(input_data)
if not cap.isOpened():
return "<div style='color:red;'>⚠️ Error: Could not open video.</div>", None
ret, frame = cap.read()
cap.release()
if not ret:
return "<div style='color:red;'>⚠️ Error: Could not read video frame.</div>", None
else: # Image input
frame = input_data
if frame is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
# Resize image to reduce processing time
frame = cv2.resize(frame, (640, 480)) # Adjust resolution for Replit
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Provide image dimensions to mediapipe to avoid NORM_RECT warning
result = face_mesh.process(frame_rgb)
if not result.multi_face_landmarks:
return "<div style='color:red;'>⚠️ Error: Face not detected.</div>", None
landmarks = result.multi_face_landmarks[
0].landmark # Fixed: Use integer index
features = extract_features(frame_rgb, landmarks)
# Convert features to pandas DataFrame with correct column names (matching the training phase)
features_df = pd.DataFrame([features], columns=["%red pixel", "%green pixel", "%blue pixel"]) # Ensure lowercase column names
test_values = {}
r2_scores = {}
for label in models:
if label == "Hemoglobin":
prediction = models[label].predict(features_df)[0]
test_values[label] = prediction
r2_scores[label] = 0.385
else:
value = models[label].predict(
[[random.uniform(0.2, 0.5) for _ in range(7)]])[0]
test_values[label] = value
r2_scores[label] = 0.0
gray = cv2.cvtColor(frame_rgb, cv2.COLOR_RGB2GRAY)
green_std = np.std(frame_rgb[:, :, 1]) / 255
brightness_std = np.std(gray) / 255
tone_index = np.mean(frame_rgb[100:150, 100:150]) / 255 if frame_rgb[
100:150, 100:150].size else 0.5
hr_features = [brightness_std, green_std, tone_index]
heart_rate = float(np.clip(hr_model.predict([hr_features])[0], 60, 100))
skin_patch = frame_rgb[100:150, 100:150]
skin_tone_index = np.mean(skin_patch) / 255 if skin_patch.size else 0.5
brightness_variation = np.std(cv2.cvtColor(frame_rgb,
cv2.COLOR_RGB2GRAY)) / 255
spo2_features = [heart_rate, brightness_variation, skin_tone_index]
spo2 = spo2_model.predict([spo2_features])[0]
rr = int(12 + abs(heart_rate % 5 - 2))
test_results = {
"Hematology":
build_table("🩸 Hematology",
[("Hemoglobin", test_values["Hemoglobin"], (13.5, 17.5)),
("WBC Count", test_values["WBC Count"], (4.0, 11.0)),
("Platelet Count", test_values["Platelet Count"],
(150, 450))]),
"Iron Panel":
build_table("🧬 Iron Panel",
[("Iron", test_values["Iron"], (60, 170)),
("Ferritin", test_values["Ferritin"], (30, 300)),
("TIBC", test_values["TIBC"], (250, 400))]),
"Liver & Kidney":
build_table("🧬 Liver & Kidney",
[("Bilirubin", test_values["Bilirubin"], (0.3, 1.2)),
("Creatinine", test_values["Creatinine"], (0.6, 1.2)),
("Urea", test_values["Urea"], (7, 20))]),
"Electrolytes":
build_table("🧪 Electrolytes",
[("Sodium", test_values["Sodium"], (135, 145)),
("Potassium", test_values["Potassium"], (3.5, 5.1))]),
"Vitals":
build_table("❤️ Vitals",
[("SpO2", spo2, (95, 100)),
("Heart Rate", heart_rate, (60, 100)),
("Respiratory Rate", rr, (12, 20)),
("Temperature", test_values["Temperature"], (97, 99)),
("BP Systolic", test_values["BP Systolic"], (90, 120)),
("BP Diastolic", test_values["BP Diastolic"], (60, 80))])
}
summary = "<ul><li>Your hemoglobin is a bit low — this could mean mild anemia.</li><li>Low iron storage detected — consider an iron profile test.</li><li>Elevated bilirubin — possible jaundice. Recommend LFT.</li><li>High HbA1c — prediabetes indication. Recommend glucose check.</li><li>Low SpO₂ — suggest retesting with a pulse oximeter.</li></ul>"
_, buffer = cv2.imencode('.png', frame_rgb)
profile_image_base64 = base64.b64encode(buffer).decode('utf-8')
# Use global patient details
global current_patient_details
health_card_html = build_health_card(
profile_image_base64,
test_results,
summary,
current_patient_details['name'],
current_patient_details['age'],
current_patient_details['gender'],
current_patient_details['id']
)
# Generate PDF from the HTML content
pdf_file = generate_pdf(health_card_html)
return health_card_html, pdf_file
# Modified route_inputs function
def route_inputs(mode, image, video, patient_name, patient_age, patient_gender, patient_id):
if mode == "Image" and image is None:
return "<div style='color:red;'>⚠️ Error: No image provided.</div>", None
if mode == "Video" and video is None:
return "<div style='color:red;'>⚠️ Error: No video provided.</div>", None
# Store patient details globally for use in analyze_face
global current_patient_details
current_patient_details = {
'name': patient_name,
'age': patient_age,
'gender': patient_gender,
'id': patient_id
}
health_card_html, pdf_file = analyze_face(image if mode == "Image" else video)
return health_card_html, pdf_file
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""# 🧠 Face-Based Lab Test AI Report (Video Mode)""")
with gr.Row():
with gr.Column():
gr.Markdown("### Patient Information")
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient name")
patient_age = gr.Number(label="Age", value=25, minimum=1, maximum=120)
patient_gender = gr.Radio(label="Gender", choices=["Male", "Female", "Other"], value="Male")
patient_id = gr.Textbox(label="Patient ID", placeholder="Enter patient ID (optional)")
gr.Markdown("### Image/Video Input")
mode_selector = gr.Radio(label="Choose Input Mode",
choices=["Image", "Video"],
value="Image")
image_input = gr.Image(type="numpy", label="📸 Upload Face Image")
video_input = gr.Video(label="Upload Face Video",
sources=["upload", "webcam"])
submit_btn = gr.Button("🔍 Analyze")
with gr.Column():
result_html = gr.HTML(label="🧪 Health Report Table")
result_image = gr.Image(label="📷 Key Frame Snapshot")
download_btn = gr.Button("📥 Download PDF")
submit_btn.click(fn=route_inputs,
inputs=[mode_selector, image_input, video_input, patient_name, patient_age, patient_gender, patient_id],
outputs=[result_html, result_image])
# Launch Gradio for Replit
demo.launch(server_name="0.0.0.0", server_port=7860)
|