Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import whisper | |
from transformers import pipeline | |
### ββββββββββββββββββββββββββββββββββββββββ | |
title="Whisper to Emotion" | |
### ββββββββββββββββββββββββββββββββββββββββ | |
whisper_model = whisper.load_model("medium") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion') | |
def translate_and_classify(audio): | |
print(""" | |
β | |
Sending audio to Whisper ... | |
β | |
""") | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
_, probs = whisper_model.detect_language(mel) | |
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False) | |
translate_options = whisper.DecodingOptions(task="translate", fp16 = False) | |
transcription = whisper.decode(whisper_model, mel, transcript_options) | |
translation = whisper.decode(whisper_model, mel, translate_options) | |
print("Language Spoken: " + transcription.language) | |
print("Transcript: " + transcription.text) | |
print("Translated: " + translation.text) | |
emotion = emotion_classifier(translation.text) | |
detected_emotion = emotion[0]["label"] | |
print("Detected Emotion: ", detected_emotion) | |
return transcription.text, detected_emotion | |
css = """ | |
.gradio-container { | |
font-family: 'IBM Plex Sans', sans-serif; | |
} | |
.gr-button { | |
color: white; | |
border-color: black; | |
background: black; | |
} | |
input[type='range'] { | |
accent-color: black; | |
} | |
.dark input[type='range'] { | |
accent-color: #dfdfdf; | |
} | |
.container { | |
max-width: 730px; | |
margin: auto; | |
padding-top: 1.5rem; | |
} | |
#gallery { | |
min-height: 22rem; | |
margin-bottom: 15px; | |
margin-left: auto; | |
margin-right: auto; | |
border-bottom-right-radius: .5rem !important; | |
border-bottom-left-radius: .5rem !important; | |
} | |
#gallery>div>.h-full { | |
min-height: 20rem; | |
} | |
.details:hover { | |
text-decoration: underline; | |
} | |
.gr-button { | |
white-space: nowrap; | |
} | |
.gr-button:focus { | |
border-color: rgb(147 197 253 / var(--tw-border-opacity)); | |
outline: none; | |
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); | |
--tw-border-opacity: 1; | |
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); | |
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); | |
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); | |
--tw-ring-opacity: .5; | |
} | |
#advanced-btn { | |
font-size: .7rem !important; | |
line-height: 19px; | |
margin-top: 12px; | |
margin-bottom: 12px; | |
padding: 2px 8px; | |
border-radius: 14px !important; | |
} | |
#advanced-options { | |
display: none; | |
margin-bottom: 20px; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 35px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
""" | |
with gr.Blocks(css = css) as demo: | |
gr.Markdown(""" | |
## Emotion Detection From Speech with Whisper | |
""") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with a emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls. | |
</p> | |
''') | |
with gr.Column(): | |
#gr.Markdown(""" ### Record audio """) | |
with gr.Tab("Record Audio"): | |
audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath") | |
transcribe_audio_r = gr.Button('Transcribe') | |
with gr.Tab("Upload Audio as File"): | |
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath") | |
transcribe_audio_u = gr.Button('Transcribe') | |
with gr.Row(): | |
transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3) | |
emotion_output = gr.Textbox(label = "Detected Emotion") | |
transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output]) | |
transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output]) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> - | |
<a href="https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion" style="text-decoration: underline;" target="_blank">Emotion Detection Model</a> | |
</p> | |
</div> | |
''') | |
#gr.Markdown("") | |
demo.launch() |