File size: 6,159 Bytes
0899e82
e0c2b71
 
f488509
e0c2b71
 
 
 
 
 
 
380824f
e0c2b71
 
 
673aba3
f488509
c6c6f6f
ddab9eb
7dd7859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c6f6f
8b338c8
87d2c68
3ae5bc7
feccae1
7dd7859
6452498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbe0d2a
ddab9eb
dd9eb54
232e486
77a2b12
7e82c91
77a2b12
232e486
dbe0d2a
ce8819c
c6c6f6f
24cbf9c
 
 
 
 
 
 
e3ec47c
 
 
87d2c68
a846d22
24cbf9c
7e82c91
717ce50
 
cff6b7f
 
717ce50
 
 
7e82c91
717ce50
dbe0d2a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import torch
import whisper
from transformers import pipeline

### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

title="Whisper to Emotion"

### β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”β€”

whisper_model = whisper.load_model("medium")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')

def translate_and_classify(audio):
    
    print("""
    β€”
    Sending audio to Whisper ...
    β€”
    """)
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
    
    _, probs = whisper_model.detect_language(mel)
    
    transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
    translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
    
    transcription = whisper.decode(whisper_model, mel, transcript_options)
    translation = whisper.decode(whisper_model, mel, translate_options)
    
    print("Language Spoken: " + transcription.language)
    print("Transcript: " + transcription.text)  
    print("Translated: " + translation.text)
    
    emotion = emotion_classifier(translation.text)
    detected_emotion = emotion[0]["label"]
    print("Detected Emotion: ", detected_emotion)
    return transcription.text, detected_emotion

css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: black;
            background: black;
        }
        input[type='range'] {
            accent-color: black;
        }
        .dark input[type='range'] {
            accent-color: #dfdfdf;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }


"""
with gr.Blocks(css = css) as demo:
    gr.Markdown("""
                ## Emotion Detection From Speech with Whisper
            """)
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with a emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls.
              </p>
              ''')
    
    with gr.Column():
            #gr.Markdown(""" ### Record audio """)
        with gr.Tab("Record Audio"):
            audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
            transcribe_audio_r = gr.Button('Transcribe')
        
        with gr.Tab("Upload Audio as File"):
            audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
            transcribe_audio_u = gr.Button('Transcribe')

        with gr.Row():
            transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3)
            emotion_output = gr.Textbox(label = "Detected Emotion")
    
    transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
    transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])   
    gr.HTML('''
        <div class="footer">
                    <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -   
                    <a href="https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion" style="text-decoration: underline;" target="_blank">Emotion Detection Model</a>
                    </p>
        </div>
        ''')
    #gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-earnings-call-whisperer)")
    
    
demo.launch()