RamAnanth1 commited on
Commit
7e82c91
·
1 Parent(s): 3ae5bc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -131,7 +131,7 @@ with gr.Blocks(css = css) as demo:
131
  """)
132
  gr.HTML('''
133
  <p style="margin-bottom: 10px; font-size: 94%">
134
- Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with a emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze setiment from customer calls.
135
  </p>
136
  ''')
137
 
@@ -150,7 +150,7 @@ with gr.Blocks(css = css) as demo:
150
  emotion_output = gr.Textbox(label = "Detected Emotion")
151
 
152
  transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
153
- transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])
154
  gr.HTML('''
155
  <div class="footer">
156
  <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
@@ -158,6 +158,7 @@ with gr.Blocks(css = css) as demo:
158
  </p>
159
  </div>
160
  ''')
 
161
 
162
 
163
  demo.launch()
 
131
  """)
132
  gr.HTML('''
133
  <p style="margin-bottom: 10px; font-size: 94%">
134
+ Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with a emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls.
135
  </p>
136
  ''')
137
 
 
150
  emotion_output = gr.Textbox(label = "Detected Emotion")
151
 
152
  transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
153
+ transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])
154
  gr.HTML('''
155
  <div class="footer">
156
  <p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
 
158
  </p>
159
  </div>
160
  ''')
161
+ #gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-earnings-call-whisperer)")
162
 
163
 
164
  demo.launch()