Spaces:
Runtime error
Runtime error
File size: 5,586 Bytes
0899e82 e0c2b71 f488509 e0c2b71 569199d 1f93035 673aba3 f488509 c6c6f6f ddab9eb 3967e54 87d2c68 3ae5bc7 3967e54 7dd7859 6452498 dbe0d2a ddab9eb dd9eb54 232e486 77a2b12 a0d8494 77a2b12 232e486 dbe0d2a ce8819c c6c6f6f 24cbf9c e3ec47c 87d2c68 a846d22 24cbf9c 7e82c91 717ce50 cff6b7f 717ce50 740e124 717ce50 dbe0d2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import gradio as gr
import torch
import whisper
from transformers import pipeline
### ββββββββββββββββββββββββββββββββββββββββ
title="Whisper to Emotion"
### ββββββββββββββββββββββββββββββββββββββββ
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
whisper = gr.Interface.load(name="spaces/openai/whisper")
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
def translate_and_classify(audio):
text_result = whisper(audio, None, "transcribe", fn_index=0)
emotion = emotion_classifier(text_result)
detected_emotion = emotion[0]["label"]
print("Detected Emotion: ", detected_emotion)
return text_result, detected_emotion
css = """
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
color: white;
border-color: black;
background: black;
}
input[type='range'] {
accent-color: black;
}
.dark input[type='range'] {
accent-color: #dfdfdf;
}
.container {
max-width: 730px;
margin: auto;
padding-top: 1.5rem;
}
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
#gallery>div>.h-full {
min-height: 20rem;
}
.details:hover {
text-decoration: underline;
}
.gr-button {
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
#advanced-btn {
font-size: .7rem !important;
line-height: 19px;
margin-top: 12px;
margin-bottom: 12px;
padding: 2px 8px;
border-radius: 14px !important;
}
#advanced-options {
display: none;
margin-bottom: 20px;
}
.footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
"""
with gr.Blocks(css = css) as demo:
gr.Markdown("""
## Emotion Detection From Speech with Whisper
""")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
Whisper is a general-purpose speech recognition model released by OpenAI that can perform multilingual speech recognition as well as speech translation and language identification. Combined with an emotion detection model,this allows for detecting emotion directly from speech in multiple languages and can potentially be used to analyze sentiment from customer calls. It could also be used to transcribe and detect different emotions to enable a data-driven analysis for psychotherapy.
</p>
''')
with gr.Column():
#gr.Markdown(""" ### Record audio """)
with gr.Tab("Record Audio"):
audio_input_r = gr.Audio(label = 'Record Audio Input',source="microphone",type="filepath")
transcribe_audio_r = gr.Button('Transcribe')
with gr.Tab("Upload Audio as File"):
audio_input_u = gr.Audio(label = 'Upload Audio',source="upload",type="filepath")
transcribe_audio_u = gr.Button('Transcribe')
with gr.Row():
transcript_output = gr.Textbox(label="Transcription in the language you spoke", lines = 3)
emotion_output = gr.Textbox(label = "Detected Emotion")
transcribe_audio_r.click(translate_and_classify, inputs = audio_input_r, outputs = [transcript_output,emotion_output])
transcribe_audio_u.click(translate_and_classify, inputs = audio_input_u, outputs = [transcript_output,emotion_output])
gr.HTML('''
<div class="footer">
<p>Whisper Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> -
<a href="https://huggingface.co/bhadresh-savani/distilbert-base-uncased-emotion" style="text-decoration: underline;" target="_blank">Emotion Detection Model</a>
</p>
</div>
''')
gr.Markdown("")
demo.launch() |