Spaces:
Runtime error
Runtime error
Commit
Β·
1f93035
1
Parent(s):
e0b4905
Switch to HF based whisper-large-v2 model
Browse files
app.py
CHANGED
@@ -9,40 +9,30 @@ title="Whisper to Emotion"
|
|
9 |
|
10 |
### ββββββββββββββββββββββββββββββββββββββββ
|
11 |
|
12 |
-
whisper_model = whisper.load_model("large")
|
13 |
-
|
14 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
|
17 |
|
18 |
def translate_and_classify(audio):
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
β
|
22 |
-
Sending audio to Whisper ...
|
23 |
-
β
|
24 |
-
""")
|
25 |
-
audio = whisper.load_audio(audio)
|
26 |
-
audio = whisper.pad_or_trim(audio)
|
27 |
-
|
28 |
-
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
29 |
-
|
30 |
-
_, probs = whisper_model.detect_language(mel)
|
31 |
-
|
32 |
-
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
|
33 |
-
translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
|
34 |
-
|
35 |
-
transcription = whisper.decode(whisper_model, mel, transcript_options)
|
36 |
-
translation = whisper.decode(whisper_model, mel, translate_options)
|
37 |
-
|
38 |
-
print("Language Spoken: " + transcription.language)
|
39 |
-
print("Transcript: " + transcription.text)
|
40 |
-
print("Translated: " + translation.text)
|
41 |
-
|
42 |
-
emotion = emotion_classifier(translation.text)
|
43 |
detected_emotion = emotion[0]["label"]
|
44 |
print("Detected Emotion: ", detected_emotion)
|
45 |
-
return
|
46 |
|
47 |
css = """
|
48 |
.gradio-container {
|
|
|
9 |
|
10 |
### ββββββββββββββββββββββββββββββββββββββββ
|
11 |
|
|
|
|
|
12 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
13 |
|
14 |
+
whisper_model = pipeline(
|
15 |
+
task="automatic-speech-recognition",
|
16 |
+
model="openai/whisper-large-v2",
|
17 |
+
chunk_length_s=30,
|
18 |
+
device=device,
|
19 |
+
)
|
20 |
+
|
21 |
+
all_special_ids = whisper_model.tokenizer.all_special_ids
|
22 |
+
transcribe_token_id = all_special_ids[-5]
|
23 |
+
translate_token_id = all_special_ids[-6]
|
24 |
+
|
25 |
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
|
26 |
|
27 |
def translate_and_classify(audio):
|
28 |
+
task = "Transcribe in Spoken Language"
|
29 |
+
whisper_model.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="Transcribe in Spoken Language" else translate_token_id]]
|
30 |
+
text = whisper_model(audio)["text"]
|
31 |
|
32 |
+
emotion = emotion_classifier(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
detected_emotion = emotion[0]["label"]
|
34 |
print("Detected Emotion: ", detected_emotion)
|
35 |
+
return text, detected_emotion
|
36 |
|
37 |
css = """
|
38 |
.gradio-container {
|