Spaces:
Runtime error
Runtime error
Commit
Β·
1f93035
1
Parent(s):
e0b4905
Switch to HF based whisper-large-v2 model
Browse files
app.py
CHANGED
|
@@ -9,40 +9,30 @@ title="Whisper to Emotion"
|
|
| 9 |
|
| 10 |
### ββββββββββββββββββββββββββββββββββββββββ
|
| 11 |
|
| 12 |
-
whisper_model = whisper.load_model("large")
|
| 13 |
-
|
| 14 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
|
| 17 |
|
| 18 |
def translate_and_classify(audio):
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
β
|
| 22 |
-
Sending audio to Whisper ...
|
| 23 |
-
β
|
| 24 |
-
""")
|
| 25 |
-
audio = whisper.load_audio(audio)
|
| 26 |
-
audio = whisper.pad_or_trim(audio)
|
| 27 |
-
|
| 28 |
-
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
|
| 29 |
-
|
| 30 |
-
_, probs = whisper_model.detect_language(mel)
|
| 31 |
-
|
| 32 |
-
transcript_options = whisper.DecodingOptions(task="transcribe", fp16 = False)
|
| 33 |
-
translate_options = whisper.DecodingOptions(task="translate", fp16 = False)
|
| 34 |
-
|
| 35 |
-
transcription = whisper.decode(whisper_model, mel, transcript_options)
|
| 36 |
-
translation = whisper.decode(whisper_model, mel, translate_options)
|
| 37 |
-
|
| 38 |
-
print("Language Spoken: " + transcription.language)
|
| 39 |
-
print("Transcript: " + transcription.text)
|
| 40 |
-
print("Translated: " + translation.text)
|
| 41 |
-
|
| 42 |
-
emotion = emotion_classifier(translation.text)
|
| 43 |
detected_emotion = emotion[0]["label"]
|
| 44 |
print("Detected Emotion: ", detected_emotion)
|
| 45 |
-
return
|
| 46 |
|
| 47 |
css = """
|
| 48 |
.gradio-container {
|
|
|
|
| 9 |
|
| 10 |
### ββββββββββββββββββββββββββββββββββββββββ
|
| 11 |
|
|
|
|
|
|
|
| 12 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 13 |
|
| 14 |
+
whisper_model = pipeline(
|
| 15 |
+
task="automatic-speech-recognition",
|
| 16 |
+
model="openai/whisper-large-v2",
|
| 17 |
+
chunk_length_s=30,
|
| 18 |
+
device=device,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
all_special_ids = whisper_model.tokenizer.all_special_ids
|
| 22 |
+
transcribe_token_id = all_special_ids[-5]
|
| 23 |
+
translate_token_id = all_special_ids[-6]
|
| 24 |
+
|
| 25 |
emotion_classifier = pipeline("text-classification",model='bhadresh-savani/distilbert-base-uncased-emotion')
|
| 26 |
|
| 27 |
def translate_and_classify(audio):
|
| 28 |
+
task = "Transcribe in Spoken Language"
|
| 29 |
+
whisper_model.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="Transcribe in Spoken Language" else translate_token_id]]
|
| 30 |
+
text = whisper_model(audio)["text"]
|
| 31 |
|
| 32 |
+
emotion = emotion_classifier(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
detected_emotion = emotion[0]["label"]
|
| 34 |
print("Detected Emotion: ", detected_emotion)
|
| 35 |
+
return text, detected_emotion
|
| 36 |
|
| 37 |
css = """
|
| 38 |
.gradio-container {
|