|
import asyncio |
|
import logging |
|
from typing import List, Dict |
|
from cryptography.hazmat.primitives import hashes |
|
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC |
|
from cryptography.hazmat.primitives.asymmetric import rsa, padding |
|
from cryptography.fernet import Fernet |
|
|
|
|
|
class Element: |
|
DEFENSE_ACTIONS = { |
|
"evasion": "evades threats through strategic ambiguity", |
|
"adaptability": "adapts to counter emerging challenges", |
|
"fortification": "strengthens defensive parameters" |
|
} |
|
|
|
def __init__(self, name: str, symbol: str, defense: str): |
|
self.name = name |
|
self.symbol = symbol |
|
self.defense = defense |
|
|
|
def defend(self): |
|
return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}" |
|
|
|
|
|
class AIPerspective: |
|
PERSPECTIVES = { |
|
"newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N", |
|
"davinci": lambda q: f"Creative Insight: {q[::-1]}", |
|
"quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty" |
|
} |
|
|
|
def __init__(self, active_perspectives: List[str] = None): |
|
self.active = active_perspectives or list(self.PERSPECTIVES.keys()) |
|
|
|
async def analyze(self, question: str) -> List[str]: |
|
return [self.PERSPECTIVES[p](question) for p in self.active] |
|
|
|
|
|
class QuantumSafeEncryptor: |
|
def __init__(self): |
|
self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096) |
|
self.public_key = self.private_key.public_key() |
|
|
|
def hybrid_encrypt(self, data: str) -> bytes: |
|
|
|
sym_key = Fernet.generate_key() |
|
fernet = Fernet(sym_key) |
|
|
|
|
|
encrypted_data = fernet.encrypt(data.encode()) |
|
|
|
|
|
encrypted_key = self.public_key.encrypt( |
|
sym_key, |
|
padding.OAEP( |
|
mgf=padding.MGF1(algorithm=hashes.SHA512()), |
|
algorithm=hashes.SHA512(), |
|
label=None |
|
) |
|
) |
|
|
|
return encrypted_key + b'||SEPARATOR||' + encrypted_data |
|
|
|
|
|
class AINeuralOptimizer: |
|
def __init__(self): |
|
self.search_model = None |
|
|
|
async def optimize_pipeline(self, dataset): |
|
from autokeras import StructuredDataClassifier |
|
self.search_model = StructuredDataClassifier(max_trials=10) |
|
self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50) |
|
|
|
def generate_architecture(self): |
|
import tensorflow as tf |
|
best_model = self.search_model.export_model() |
|
return tf.keras.models.clone_model(best_model) |
|
|
|
|
|
class HolographicKnowledge: |
|
def __init__(self, uri, user, password): |
|
from neo4j import GraphDatabase |
|
self.driver = GraphDatabase.driver(uri, auth=(user, password)) |
|
|
|
async def store_relationship(self, entity1, relationship, entity2): |
|
with self.driver.session() as session: |
|
session.write_transaction( |
|
self._create_relationship, entity1, relationship, entity2 |
|
) |
|
|
|
@staticmethod |
|
def _create_relationship(tx, e1, rel, e2): |
|
query = ( |
|
"MERGE (a:Entity {name: $e1}) " |
|
"MERGE (b:Entity {name: $e2}) " |
|
f"MERGE (a)-[r:{rel}]->(b)" |
|
) |
|
tx.run(query, e1=e1, e2=e2) |
|
|
|
|
|
class SelfHealingSystem: |
|
def __init__(self): |
|
from elasticsearch import Elasticsearch |
|
import sentry_sdk |
|
self.es = Elasticsearch() |
|
sentry_sdk.init(dsn="YOUR_SENTRY_DSN") |
|
|
|
async def monitor_system(self): |
|
import psutil |
|
while True: |
|
health = await self.check_health() |
|
if health['status'] != 'GREEN': |
|
self.heal_system(health) |
|
await asyncio.sleep(60) |
|
|
|
async def check_health(self): |
|
import psutil |
|
return { |
|
'memory': psutil.virtual_memory().percent, |
|
'cpu': psutil.cpu_percent(), |
|
'response_time': self._measure_response_time() |
|
} |
|
|
|
def heal_system(self, health): |
|
if health['memory'] > 90: |
|
self._clean_memory() |
|
if health['response_time'] > 5000: |
|
self._scale_out() |
|
|
|
def _measure_response_time(self): |
|
|
|
return 100 |
|
|
|
def _clean_memory(self): |
|
|
|
pass |
|
|
|
def _scale_out(self): |
|
|
|
pass |
|
|
|
|
|
class TemporalProphet: |
|
def __init__(self): |
|
from prophet import Prophet |
|
self.models = {} |
|
|
|
async def analyze_temporal_patterns(self, data): |
|
model = Prophet(interval_width=0.95) |
|
model.fit(data) |
|
future = model.make_future_dataframe(periods=365) |
|
forecast = model.predict(future) |
|
return forecast |
|
|
|
def detect_anomalies(self, forecast): |
|
return forecast[ |
|
(forecast['yhat_lower'] > forecast['cap']) | |
|
(forecast['yhat_upper'] < forecast['floor']) |
|
] |
|
|
|
|
|
class AISystem: |
|
def __init__(self): |
|
self.elements = [ |
|
Element("Hydrogen", "H", "evasion"), |
|
Element("Carbon", "C", "adaptability") |
|
] |
|
self.ai = AIPerspective() |
|
self.security = QuantumSafeEncryptor() |
|
self.self_healing = SelfHealingSystem() |
|
self.temporal_analysis = TemporalProphet() |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
async def process_query(self, question: str) -> Dict: |
|
try: |
|
|
|
perspectives = await self.ai.analyze(question) |
|
|
|
|
|
defenses = [e.defend() for e in self.elements |
|
if e.name.lower() in question.lower()] |
|
|
|
return { |
|
"perspectives": perspectives, |
|
"defenses": defenses, |
|
"encrypted": self.security.hybrid_encrypt(question) |
|
} |
|
|
|
except Exception as e: |
|
logging.error(f"Processing error: {e}") |
|
return {"error": str(e)} |
|
|
|
|
|
async def main(): |
|
system = AISystem() |
|
response = await system.process_query("How does Hydrogen defend?") |
|
print("AI Response:", response) |
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |