Create aicore.py
Browse files
aicore.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import logging
|
3 |
+
from typing import List, Dict
|
4 |
+
from cryptography.hazmat.primitives import hashes
|
5 |
+
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
|
6 |
+
from cryptography.hazmat.primitives.asymmetric import rsa, padding
|
7 |
+
from cryptography.fernet import Fernet
|
8 |
+
|
9 |
+
# Simplified Element System
|
10 |
+
class Element:
|
11 |
+
DEFENSE_ACTIONS = {
|
12 |
+
"evasion": "evades threats through strategic ambiguity",
|
13 |
+
"adaptability": "adapts to counter emerging challenges",
|
14 |
+
"fortification": "strengthens defensive parameters"
|
15 |
+
}
|
16 |
+
|
17 |
+
def __init__(self, name: str, symbol: str, defense: str):
|
18 |
+
self.name = name
|
19 |
+
self.symbol = symbol
|
20 |
+
self.defense = defense
|
21 |
+
|
22 |
+
def defend(self):
|
23 |
+
return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}"
|
24 |
+
|
25 |
+
# Core AI Perspectives
|
26 |
+
class AIPerspective:
|
27 |
+
PERSPECTIVES = {
|
28 |
+
"newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N",
|
29 |
+
"davinci": lambda q: f"Creative Insight: {q[::-1]}",
|
30 |
+
"quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty"
|
31 |
+
}
|
32 |
+
|
33 |
+
def __init__(self, active_perspectives: List[str] = None):
|
34 |
+
self.active = active_perspectives or list(self.PERSPECTIVES.keys())
|
35 |
+
|
36 |
+
async def analyze(self, question: str) -> List[str]:
|
37 |
+
return [self.PERSPECTIVES[p](question) for p in self.active]
|
38 |
+
|
39 |
+
# Quantum-Resistant Encryption Upgrade
|
40 |
+
class QuantumSafeEncryptor:
|
41 |
+
def __init__(self):
|
42 |
+
self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096)
|
43 |
+
self.public_key = self.private_key.public_key()
|
44 |
+
|
45 |
+
def hybrid_encrypt(self, data: str) -> bytes:
|
46 |
+
# Generate symmetric key
|
47 |
+
sym_key = Fernet.generate_key()
|
48 |
+
fernet = Fernet(sym_key)
|
49 |
+
|
50 |
+
# Encrypt data with symmetric encryption
|
51 |
+
encrypted_data = fernet.encrypt(data.encode())
|
52 |
+
|
53 |
+
# Encrypt symmetric key with post-quantum algorithm
|
54 |
+
encrypted_key = self.public_key.encrypt(
|
55 |
+
sym_key,
|
56 |
+
padding.OAEP(
|
57 |
+
mgf=padding.MGF1(algorithm=hashes.SHA512()),
|
58 |
+
algorithm=hashes.SHA512(),
|
59 |
+
label=None
|
60 |
+
)
|
61 |
+
)
|
62 |
+
|
63 |
+
return encrypted_key + b'||SEPARATOR||' + encrypted_data
|
64 |
+
|
65 |
+
# Neural Architecture Search Integration
|
66 |
+
class AINeuralOptimizer:
|
67 |
+
def __init__(self):
|
68 |
+
self.search_model = None
|
69 |
+
|
70 |
+
async def optimize_pipeline(self, dataset):
|
71 |
+
from autokeras import StructuredDataClassifier
|
72 |
+
self.search_model = StructuredDataClassifier(max_trials=10)
|
73 |
+
self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50)
|
74 |
+
|
75 |
+
def generate_architecture(self):
|
76 |
+
import tensorflow as tf
|
77 |
+
best_model = self.search_model.export_model()
|
78 |
+
return tf.keras.models.clone_model(best_model)
|
79 |
+
|
80 |
+
# Holographic Knowledge Graph
|
81 |
+
class HolographicKnowledge:
|
82 |
+
def __init__(self, uri, user, password):
|
83 |
+
from neo4j import GraphDatabase
|
84 |
+
self.driver = GraphDatabase.driver(uri, auth=(user, password))
|
85 |
+
|
86 |
+
async def store_relationship(self, entity1, relationship, entity2):
|
87 |
+
with self.driver.session() as session:
|
88 |
+
session.write_transaction(
|
89 |
+
self._create_relationship, entity1, relationship, entity2
|
90 |
+
)
|
91 |
+
|
92 |
+
@staticmethod
|
93 |
+
def _create_relationship(tx, e1, rel, e2):
|
94 |
+
query = (
|
95 |
+
"MERGE (a:Entity {name: $e1}) "
|
96 |
+
"MERGE (b:Entity {name: $e2}) "
|
97 |
+
f"MERGE (a)-[r:{rel}]->(b)"
|
98 |
+
)
|
99 |
+
tx.run(query, e1=e1, e2=e2)
|
100 |
+
|
101 |
+
# Self-Healing Mechanism
|
102 |
+
class SelfHealingSystem:
|
103 |
+
def __init__(self):
|
104 |
+
from elasticsearch import Elasticsearch
|
105 |
+
import sentry_sdk
|
106 |
+
self.es = Elasticsearch()
|
107 |
+
sentry_sdk.init(dsn="YOUR_SENTRY_DSN")
|
108 |
+
|
109 |
+
async def monitor_system(self):
|
110 |
+
import psutil
|
111 |
+
while True:
|
112 |
+
health = await self.check_health()
|
113 |
+
if health['status'] != 'GREEN':
|
114 |
+
self.heal_system(health)
|
115 |
+
await asyncio.sleep(60)
|
116 |
+
|
117 |
+
async def check_health(self):
|
118 |
+
import psutil
|
119 |
+
return {
|
120 |
+
'memory': psutil.virtual_memory().percent,
|
121 |
+
'cpu': psutil.cpu_percent(),
|
122 |
+
'response_time': self._measure_response_time()
|
123 |
+
}
|
124 |
+
|
125 |
+
def heal_system(self, health):
|
126 |
+
if health['memory'] > 90:
|
127 |
+
self._clean_memory()
|
128 |
+
if health['response_time'] > 5000:
|
129 |
+
self._scale_out()
|
130 |
+
|
131 |
+
def _measure_response_time(self):
|
132 |
+
# Implement response time measurement
|
133 |
+
return 100 # Placeholder value
|
134 |
+
|
135 |
+
def _clean_memory(self):
|
136 |
+
# Implement memory cleaning
|
137 |
+
pass
|
138 |
+
|
139 |
+
def _scale_out(self):
|
140 |
+
# Implement scaling out
|
141 |
+
pass
|
142 |
+
|
143 |
+
# Temporal Analysis Engine
|
144 |
+
class TemporalProphet:
|
145 |
+
def __init__(self):
|
146 |
+
from prophet import Prophet
|
147 |
+
self.models = {}
|
148 |
+
|
149 |
+
async def analyze_temporal_patterns(self, data):
|
150 |
+
model = Prophet(interval_width=0.95)
|
151 |
+
model.fit(data)
|
152 |
+
future = model.make_future_dataframe(periods=365)
|
153 |
+
forecast = model.predict(future)
|
154 |
+
return forecast
|
155 |
+
|
156 |
+
def detect_anomalies(self, forecast):
|
157 |
+
return forecast[
|
158 |
+
(forecast['yhat_lower'] > forecast['cap']) |
|
159 |
+
(forecast['yhat_upper'] < forecast['floor'])
|
160 |
+
]
|
161 |
+
|
162 |
+
# Unified System
|
163 |
+
class AISystem:
|
164 |
+
def __init__(self):
|
165 |
+
self.elements = [
|
166 |
+
Element("Hydrogen", "H", "evasion"),
|
167 |
+
Element("Carbon", "C", "adaptability")
|
168 |
+
]
|
169 |
+
self.ai = AIPerspective()
|
170 |
+
self.security = QuantumSafeEncryptor()
|
171 |
+
self.self_healing = SelfHealingSystem()
|
172 |
+
self.temporal_analysis = TemporalProphet()
|
173 |
+
logging.basicConfig(level=logging.INFO)
|
174 |
+
|
175 |
+
async def process_query(self, question: str) -> Dict:
|
176 |
+
try:
|
177 |
+
# AI Analysis
|
178 |
+
perspectives = await self.ai.analyze(question)
|
179 |
+
|
180 |
+
# Element Defense
|
181 |
+
defenses = [e.defend() for e in self.elements
|
182 |
+
if e.name.lower() in question.lower()]
|
183 |
+
|
184 |
+
return {
|
185 |
+
"perspectives": perspectives,
|
186 |
+
"defenses": defenses,
|
187 |
+
"encrypted": self.security.hybrid_encrypt(question)
|
188 |
+
}
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
logging.error(f"Processing error: {e}")
|
192 |
+
return {"error": str(e)}
|
193 |
+
|
194 |
+
# Example Usage
|
195 |
+
async def main():
|
196 |
+
system = AISystem()
|
197 |
+
response = await system.process_query("How does Hydrogen defend?")
|
198 |
+
print("AI Response:", response)
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
asyncio.run(main())
|