File size: 6,501 Bytes
48213e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import asyncio
import logging
from typing import List, Dict
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
from cryptography.hazmat.primitives.asymmetric import rsa, padding
from cryptography.fernet import Fernet

# Simplified Element System
class Element:
    DEFENSE_ACTIONS = {
        "evasion": "evades threats through strategic ambiguity",
        "adaptability": "adapts to counter emerging challenges",
        "fortification": "strengthens defensive parameters"
    }

    def __init__(self, name: str, symbol: str, defense: str):
        self.name = name
        self.symbol = symbol
        self.defense = defense

    def defend(self):
        return f"{self.name} ({self.symbol}): {self.DEFENSE_ACTIONS[self.defense]}"

# Core AI Perspectives
class AIPerspective:
    PERSPECTIVES = {
        "newton": lambda q: f"Newtonian Analysis: Force = {len(q)*0.73:.2f}N",
        "davinci": lambda q: f"Creative Insight: {q[::-1]}",
        "quantum": lambda q: f"Quantum View: {hash(q)%100}% certainty"
    }

    def __init__(self, active_perspectives: List[str] = None):
        self.active = active_perspectives or list(self.PERSPECTIVES.keys())

    async def analyze(self, question: str) -> List[str]:
        return [self.PERSPECTIVES[p](question) for p in self.active]

# Quantum-Resistant Encryption Upgrade
class QuantumSafeEncryptor:
    def __init__(self):
        self.private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096)
        self.public_key = self.private_key.public_key()

    def hybrid_encrypt(self, data: str) -> bytes:
        # Generate symmetric key
        sym_key = Fernet.generate_key()
        fernet = Fernet(sym_key)

        # Encrypt data with symmetric encryption
        encrypted_data = fernet.encrypt(data.encode())

        # Encrypt symmetric key with post-quantum algorithm
        encrypted_key = self.public_key.encrypt(
            sym_key,
            padding.OAEP(
                mgf=padding.MGF1(algorithm=hashes.SHA512()),
                algorithm=hashes.SHA512(),
                label=None
            )
        )

        return encrypted_key + b'||SEPARATOR||' + encrypted_data

# Neural Architecture Search Integration
class AINeuralOptimizer:
    def __init__(self):
        self.search_model = None

    async def optimize_pipeline(self, dataset):
        from autokeras import StructuredDataClassifier
        self.search_model = StructuredDataClassifier(max_trials=10)
        self.search_model.fit(x=dataset.features, y=dataset.labels, epochs=50)

    def generate_architecture(self):
        import tensorflow as tf
        best_model = self.search_model.export_model()
        return tf.keras.models.clone_model(best_model)

# Holographic Knowledge Graph
class HolographicKnowledge:
    def __init__(self, uri, user, password):
        from neo4j import GraphDatabase
        self.driver = GraphDatabase.driver(uri, auth=(user, password))

    async def store_relationship(self, entity1, relationship, entity2):
        with self.driver.session() as session:
            session.write_transaction(
                self._create_relationship, entity1, relationship, entity2
            )

    @staticmethod
    def _create_relationship(tx, e1, rel, e2):
        query = (
            "MERGE (a:Entity {name: $e1}) "
            "MERGE (b:Entity {name: $e2}) "
            f"MERGE (a)-[r:{rel}]->(b)"
        )
        tx.run(query, e1=e1, e2=e2)

# Self-Healing Mechanism
class SelfHealingSystem:
    def __init__(self):
        from elasticsearch import Elasticsearch
        import sentry_sdk
        self.es = Elasticsearch()
        sentry_sdk.init(dsn="YOUR_SENTRY_DSN")

    async def monitor_system(self):
        import psutil
        while True:
            health = await self.check_health()
            if health['status'] != 'GREEN':
                self.heal_system(health)
            await asyncio.sleep(60)

    async def check_health(self):
        import psutil
        return {
            'memory': psutil.virtual_memory().percent,
            'cpu': psutil.cpu_percent(),
            'response_time': self._measure_response_time()
        }

    def heal_system(self, health):
        if health['memory'] > 90:
            self._clean_memory()
        if health['response_time'] > 5000:
            self._scale_out()

    def _measure_response_time(self):
        # Implement response time measurement
        return 100  # Placeholder value

    def _clean_memory(self):
        # Implement memory cleaning
        pass

    def _scale_out(self):
        # Implement scaling out
        pass

# Temporal Analysis Engine
class TemporalProphet:
    def __init__(self):
        from prophet import Prophet
        self.models = {}

    async def analyze_temporal_patterns(self, data):
        model = Prophet(interval_width=0.95)
        model.fit(data)
        future = model.make_future_dataframe(periods=365)
        forecast = model.predict(future)
        return forecast

    def detect_anomalies(self, forecast):
        return forecast[
            (forecast['yhat_lower'] > forecast['cap']) |
            (forecast['yhat_upper'] < forecast['floor'])
        ]

# Unified System
class AISystem:
    def __init__(self):
        self.elements = [
            Element("Hydrogen", "H", "evasion"),
            Element("Carbon", "C", "adaptability")
        ]
        self.ai = AIPerspective()
        self.security = QuantumSafeEncryptor()
        self.self_healing = SelfHealingSystem()
        self.temporal_analysis = TemporalProphet()
        logging.basicConfig(level=logging.INFO)

    async def process_query(self, question: str) -> Dict:
        try:
            # AI Analysis
            perspectives = await self.ai.analyze(question)

            # Element Defense
            defenses = [e.defend() for e in self.elements
                        if e.name.lower() in question.lower()]

            return {
                "perspectives": perspectives,
                "defenses": defenses,
                "encrypted": self.security.hybrid_encrypt(question)
            }

        except Exception as e:
            logging.error(f"Processing error: {e}")
            return {"error": str(e)}

# Example Usage
async def main():
    system = AISystem()
    response = await system.process_query("How does Hydrogen defend?")
    print("AI Response:", response)

if __name__ == "__main__":
    asyncio.run(main())