Spaces:
Paused
Paused
File size: 4,633 Bytes
fd7e04e 9ae8083 6676090 842df92 fd7e04e 5250b05 08625ae fd7e04e a677df8 fd7e04e 04bedbc 5a66be2 04bedbc 5a66be2 b042d9f a168a39 b042d9f 842df92 b042d9f 04bedbc b042d9f 04bedbc a677df8 08625ae 842df92 a677df8 08625ae a677df8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
import pandas as pd
import pickle
from utils import create_new_features, normalize, init_new_pred
with open('./trained_model.pkl', 'rb') as file:
model = pickle.load(file)
# Placeholder for displaying the predicted price at the top
price_placeholder = st.empty()
city = st.selectbox(
'Select City',
['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill',
'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City',
'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore',
'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina',
'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park',
'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond',
'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
'Woodinville', 'Yarrow Point']
)
# Define min and max values from the dictionaries
min_dict = {
'bedrooms': 0,
'bathrooms': 0,
'sqft_living': 370,
'sqft_lot': 638,
'floors': 1,
'waterfront': 0,
'view': 0,
'condition': 1,
'sqft_above': 370,
'sqft_basement': 0,
'yr_built': 1900,
'yr_renovated': 0,
'house_age': 0,
'years_since_renovation': 0
}
max_dict = {
'bedrooms': 9,
'bathrooms': 8,
'sqft_living': 13540,
'sqft_lot': 1074218,
'floors': 3,
'waterfront': 1,
'view': 4,
'condition': 5,
'sqft_above': 9410,
'sqft_basement': 4820,
'yr_built': 2014,
'yr_renovated': 2014,
'house_age': 114,
'years_since_renovation': 2014
}
# Create sliders for each item in the dictionaries
bedrooms = st.slider('Bedrooms', min_value=min_dict['bedrooms'], max_value=max_dict['bedrooms'], value=min_dict['bedrooms'])
bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=max_dict['bathrooms'], value=min_dict['bathrooms'])
sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot'])
floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors'])
waterfront = st.checkbox('Waterfront', value=False)
view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view'])
condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition'])
sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above'])
sqft_basement = st.slider('Square Feet (Basement)', min_value=min_dict['sqft_basement'], max_value=max_dict['sqft_basement'], value=min_dict['sqft_basement'])
yr_built = st.slider('Year Built', min_value=min_dict['yr_built'], max_value=max_dict['yr_built'], value=min_dict['yr_built'])
yr_renovated = st.slider('Year Renovated', min_value=min_dict['yr_renovated'], max_value=max_dict['yr_renovated'], value=min_dict['yr_renovated'])
if (bedrooms != min_dict['bedrooms'] or
bathrooms != min_dict['bathrooms'] or
sqft_living != min_dict['sqft_living'] or
sqft_lot != min_dict['sqft_lot'] or
floors != min_dict['floors'] or
waterfront != min_dict['waterfront'] or
view != min_dict['view'] or
condition != min_dict['condition'] or
sqft_above != min_dict['sqft_above'] or
sqft_basement != min_dict['sqft_basement'] or
yr_built != min_dict['yr_built'] or
yr_renovated != min_dict['yr_renovated']):
new_pred = init_new_pred()
new_pred['bedrooms'] = bedrooms
new_pred['bathrooms'] = bathrooms
new_pred['sqft_living'] = sqft_living
new_pred['sqft_lot'] = sqft_lot
new_pred['floors'] = floors
new_pred['waterfront'] = int(waterfront)
new_pred['view'] = view
new_pred['condition'] = condition
new_pred['sqft_above'] = sqft_above
new_pred['sqft_basement'] = sqft_basement
new_pred['yr_built'] = yr_built
new_pred['yr_renovated'] = yr_renovated
new_pred[f'city_{city}'] = 1
# Process the prediction
new_pred = pd.DataFrame([new_pred])
new_pred = create_new_features(new_pred)
new_pred = normalize(new_pred)
# Predict the price
predicted_price = model.predict(new_pred)
# Display the predicted price at the top of the app
price_placeholder.write(f"Predicted Price: ${predicted_price[0][0]:,.2f}")
|