RMHalak commited on
Commit
04bedbc
·
verified ·
1 Parent(s): a168a39

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -3
app.py CHANGED
@@ -9,6 +9,20 @@ with open('./trained_model.pkl', 'rb') as file:
9
  # Placeholder for displaying the predicted price at the top
10
  price_placeholder = st.empty()
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  # Define min and max values from the dictionaries
13
  min_dict = {
14
  'bedrooms': 0,
@@ -50,7 +64,7 @@ bathrooms = st.slider('Bathrooms', min_value=min_dict['bathrooms'], max_value=ma
50
  sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
51
  sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot'])
52
  floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors'])
53
- waterfront = st.slider('Waterfront', min_value=min_dict['waterfront'], max_value=max_dict['waterfront'], value=min_dict['waterfront'])
54
  view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view'])
55
  condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition'])
56
  sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above'])
@@ -77,14 +91,14 @@ if (bedrooms != min_dict['bedrooms'] or
77
  new_pred['sqft_living'] = sqft_living
78
  new_pred['sqft_lot'] = sqft_lot
79
  new_pred['floors'] = floors
80
- new_pred['waterfront'] = waterfront
81
  new_pred['view'] = view
82
  new_pred['condition'] = condition
83
  new_pred['sqft_above'] = sqft_above
84
  new_pred['sqft_basement'] = sqft_basement
85
  new_pred['yr_built'] = yr_built
86
  new_pred['yr_renovated'] = yr_renovated
87
- new_pred['city_Bellevue'] = 1
88
 
89
  # Process the prediction
90
  new_pred = pd.DataFrame([new_pred])
 
9
  # Placeholder for displaying the predicted price at the top
10
  price_placeholder = st.empty()
11
 
12
+ city = st.selectbox(
13
+ 'Select City',
14
+ ['Algona', 'Auburn', 'Beaux Arts Village', 'Bellevue',
15
+ 'Black Diamond', 'Bothell', 'Burien', 'Carnation', 'Clyde Hill',
16
+ 'Covington', 'Des Moines', 'Duvall', 'Enumclaw', 'Fall City',
17
+ 'Federal Way', 'Inglewood-Finn Hill', 'Issaquah', 'Kenmore',
18
+ 'Kent', 'Kirkland', 'Lake Forest Park', 'Maple Valley', 'Medina',
19
+ 'Mercer Island', 'Milton', 'Newcastle', 'Normandy Park',
20
+ 'North Bend', 'Pacific', 'Preston', 'Ravensdale', 'Redmond',
21
+ 'Renton', 'Sammamish', 'SeaTac', 'Seattle', 'Shoreline',
22
+ 'Skykomish', 'Snoqualmie', 'Snoqualmie Pass', 'Tukwila', 'Vashon',
23
+ 'Woodinville', 'Yarrow Point']
24
+ )
25
+
26
  # Define min and max values from the dictionaries
27
  min_dict = {
28
  'bedrooms': 0,
 
64
  sqft_living = st.slider('Square Feet (Living)', min_value=min_dict['sqft_living'], max_value=max_dict['sqft_living'], value=min_dict['sqft_living'])
65
  sqft_lot = st.slider('Square Feet (Lot)', min_value=min_dict['sqft_lot'], max_value=max_dict['sqft_lot'], value=min_dict['sqft_lot'])
66
  floors = st.slider('Floors', min_value=min_dict['floors'], max_value=max_dict['floors'], value=min_dict['floors'])
67
+ waterfront = st.checkbox('Waterfront', value=False)
68
  view = st.slider('View', min_value=min_dict['view'], max_value=max_dict['view'], value=min_dict['view'])
69
  condition = st.slider('Condition', min_value=min_dict['condition'], max_value=max_dict['condition'], value=min_dict['condition'])
70
  sqft_above = st.slider('Square Feet (Above)', min_value=min_dict['sqft_above'], max_value=max_dict['sqft_above'], value=min_dict['sqft_above'])
 
91
  new_pred['sqft_living'] = sqft_living
92
  new_pred['sqft_lot'] = sqft_lot
93
  new_pred['floors'] = floors
94
+ new_pred['waterfront'] = int(waterfront)
95
  new_pred['view'] = view
96
  new_pred['condition'] = condition
97
  new_pred['sqft_above'] = sqft_above
98
  new_pred['sqft_basement'] = sqft_basement
99
  new_pred['yr_built'] = yr_built
100
  new_pred['yr_renovated'] = yr_renovated
101
+ new_pred[f'city_{city}'] = 1
102
 
103
  # Process the prediction
104
  new_pred = pd.DataFrame([new_pred])