RMHalak commited on
Commit
08625ae
·
verified ·
1 Parent(s): 80df7fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -4
app.py CHANGED
@@ -1,13 +1,82 @@
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  with open('./trained_model.pkl', 'rb') as file:
6
- loaded_model = pickle.load(file)
7
 
8
  new_pred = st.text_area('Enter text')
9
 
10
  if new_pred:
11
- new_pred_processed = generate_features(pd.DataFrame([new_pred]), prod=True)
12
- out = loaded_model(new_pred_processed)
13
- st.json(out[0][0])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  import pandas as pd
3
  import pickle
4
+ from utils import create_new_features, normalize
5
+
6
+ min_dict = {'bedrooms': 0,
7
+ 'bathrooms': 0,
8
+ 'sqft_living': 370,
9
+ 'sqft_lot': 638,
10
+ 'floors': 1,
11
+ 'waterfront': 0,
12
+ 'view': 0,
13
+ 'condition': 1,
14
+ 'sqft_above': 370,
15
+ 'sqft_basement': 0,
16
+ 'yr_built': 1900,
17
+ 'yr_renovated': 0,
18
+ 'house_age': 0,
19
+ 'years_since_renovation': 0}
20
+
21
+ max_dict = {'bedrooms': 9,
22
+ 'bathrooms': 8,
23
+ 'sqft_living': 13540,
24
+ 'sqft_lot': 1074218,
25
+ 'floors': 3,
26
+ 'waterfront': 1,
27
+ 'view': 4,
28
+ 'condition': 5,
29
+ 'sqft_above': 9410,
30
+ 'sqft_basement': 4820,
31
+ 'yr_built': 2014,
32
+ 'yr_renovated': 2014,
33
+ 'house_age': 114,
34
+ 'years_since_renovation': 2014}
35
+
36
+ columns = ['bedrooms', 'bathrooms', 'sqft_living', 'sqft_lot', 'floors',
37
+ 'waterfront', 'view', 'condition', 'sqft_above', 'sqft_basement',
38
+ 'yr_built', 'yr_renovated', 'house_age', 'years_since_renovation',
39
+ 'has_basement', 'city_Algona', 'city_Auburn', 'city_Beaux Arts Village',
40
+ 'city_Bellevue', 'city_Black Diamond', 'city_Bothell', 'city_Burien',
41
+ 'city_Carnation', 'city_Clyde Hill', 'city_Covington',
42
+ 'city_Des Moines', 'city_Duvall', 'city_Enumclaw', 'city_Fall City',
43
+ 'city_Federal Way', 'city_Inglewood-Finn Hill', 'city_Issaquah',
44
+ 'city_Kenmore', 'city_Kent', 'city_Kirkland', 'city_Lake Forest Park',
45
+ 'city_Maple Valley', 'city_Medina', 'city_Mercer Island', 'city_Milton',
46
+ 'city_Newcastle', 'city_Normandy Park', 'city_North Bend',
47
+ 'city_Pacific', 'city_Preston', 'city_Ravensdale', 'city_Redmond',
48
+ 'city_Renton', 'city_Sammamish', 'city_SeaTac', 'city_Seattle',
49
+ 'city_Shoreline', 'city_Skykomish', 'city_Snoqualmie',
50
+ 'city_Snoqualmie Pass', 'city_Tukwila', 'city_Vashon',
51
+ 'city_Woodinville', 'city_Yarrow Point']
52
 
53
  with open('./trained_model.pkl', 'rb') as file:
54
+ model = pickle.load(file)
55
 
56
  new_pred = st.text_area('Enter text')
57
 
58
  if new_pred:
59
+ new_pred = {key:0 for key in X_train.columns}
60
+ new_pred['date'] = pd.to_datetime('2014-07-10') # do not change
61
+
62
+ new_pred['bedrooms'] = 5
63
+ new_pred['bathrooms'] = 3
64
+ new_pred['sqft_living'] = 10000
65
+ new_pred['sqft_lot'] = 1000
66
+ new_pred['floors'] = 2
67
+ new_pred['waterfront'] = 1
68
+ new_pred['view'] = 3
69
+ new_pred['condition'] = 5
70
+ new_pred['sqft_above'] = 500
71
+ new_pred['sqft_basement'] = 500
72
+ new_pred['yr_built'] = 2012
73
+ new_pred['yr_renovated'] = 2013
74
+ new_pred['city_Bellevue'] = 1
75
+ new_pred = pd.DataFrame([new_pred])
76
+
77
+ new_pred = create_new_features(new_pred)
78
+ for col in numerical_features:
79
+ new_pred[col] = normalize(new_pred, col, min_dict, max_dict)
80
+
81
+ predicted_price = model.predict(new_pred)
82
+ st.json(predicted_price[0][0])