ReportAgent / app.py
Quazim0t0's picture
Update app.py
a808dce verified
raw
history blame
6.09 kB
import os
import gradio as gr
from sqlalchemy import text
from smolagents import CodeAgent, HfApiModel
import pandas as pd
from io import StringIO
import tempfile
from datetime import datetime
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table
)
agent = CodeAgent(
tools=[],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def analyze_content(full_text):
"""Determine document type and key themes"""
analysis_prompt = f"""
Analyze this text and identify its primary domain:
{full_text[:10000]} # First 10k characters for analysis
Possible domains:
- Business/Financial
- Historical
- Scientific
- Technical
- Legal
- Literary
Return JSON format:
{{
"domain": "primary domain",
"keywords": ["list", "of", "key", "terms"],
"report_type": "business|historical|scientific|technical|legal|literary"
}}
"""
return agent.run(analysis_prompt, output_type="json")
def generate_report(full_text, domain, file_names):
"""Generate domain-specific report"""
report_prompt = f"""
Create a comprehensive {domain} report from these documents:
Files: {', '.join(file_names)}
Content:
{full_text[:20000]} # First 20k chars for report
Report structure:
1. Executive Summary
2. Key Findings/Analysis
3. Important Metrics/Statistics (if applicable)
4. Timeline of Events (historical) or Financial Overview (business)
5. Conclusions/Recommendations
Include markdown formatting with headings, bullet points, and tables where appropriate.
"""
return agent.run(report_prompt)
def process_files(file_paths):
"""Process multiple files and generate report"""
full_text = ""
file_names = []
structured_data = []
for file_path in file_paths:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
full_text += f"\n\n--- {os.path.basename(file_path)} ---\n{content}"
file_names.append(os.path.basename(file_path))
# Structure detection for tables
structure_prompt = f"Convert to CSV:\n{content}\nReturn ONLY CSV:"
csv_output = agent.run(structure_prompt)
df = pd.read_csv(StringIO(csv_output), dtype=str).dropna(how='all')
structured_data.append(df)
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
# Domain analysis
domain_info = analyze_content(full_text)
# Report generation
report = generate_report(full_text, domain_info["report_type"], file_names)
# Combine structured data
combined_df = pd.concat(structured_data, ignore_index=True) if structured_data else pd.DataFrame()
return domain_info, report, combined_df
def handle_upload(files):
"""Handle multiple file uploads"""
if not files:
return [gr.update()]*6 + [gr.update(visible=False)]
domain_info, report, df = process_files(files)
outputs = [
gr.Markdown(value=f"**Document Type:** {domain_info['domain']}"),
gr.Markdown(value=f"**Key Themes:** {', '.join(domain_info['keywords'][:5])}"),
gr.Dataframe(value=df.head(10) if not df.empty else None),
gr.Markdown(value=report),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=not df.empty)
]
return outputs
def download_report(report_type):
"""Generate downloadable reports"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{report_type}_report_{timestamp}"
temp_dir = tempfile.gettempdir()
formats = {
'pdf': f"{filename}.pdf",
'docx': f"{filename}.docx",
'csv': f"{filename}.csv"
}
# Generate files (implementation depends on your PDF/DOCX libraries)
# Add your preferred reporting libraries here
return [os.path.join(temp_dir, f) for f in formats.values()]
with gr.Blocks() as demo:
gr.Markdown("# Multi-Document Analysis System")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Documents",
file_count="multiple",
file_types=[".txt", ".doc", ".docx"],
type="filepath"
)
process_btn = gr.Button("Analyze Documents", variant="primary")
with gr.Group(visible=False) as meta_group:
domain_display = gr.Markdown()
keywords_display = gr.Markdown()
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Structured Data"):
data_table = gr.Dataframe(label="Combined Data Preview", interactive=False)
with gr.TabItem("Analysis Report"):
report_display = gr.Markdown()
with gr.Group(visible=False) as download_group:
gr.Markdown("### Download Options")
with gr.Row():
pdf_btn = gr.DownloadButton("PDF Report")
docx_btn = gr.DownloadButton("Word Report")
csv_btn = gr.DownloadButton("CSV Data")
process_btn.click(
fn=handle_upload,
inputs=file_input,
outputs=[
domain_display,
keywords_display,
data_table,
report_display,
meta_group,
download_group,
csv_btn
]
)
# Connect download buttons (implement actual file generation)
# pdf_btn.click(fn=lambda: download_report("pdf"), outputs=pdf_btn)
# docx_btn.click(fn=lambda: download_report("docx"), outputs=docx_btn)
# csv_btn.click(fn=lambda: download_report("csv"), outputs=csv_btn)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)