import os import gradio as gr from sqlalchemy import text from smolagents import CodeAgent, HfApiModel import pandas as pd from io import StringIO import tempfile from datetime import datetime from database import ( engine, create_dynamic_table, clear_database, insert_rows_into_table ) agent = CodeAgent( tools=[], model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"), ) def analyze_content(full_text): """Determine document type and key themes""" analysis_prompt = f""" Analyze this text and identify its primary domain: {full_text[:10000]} # First 10k characters for analysis Possible domains: - Business/Financial - Historical - Scientific - Technical - Legal - Literary Return JSON format: {{ "domain": "primary domain", "keywords": ["list", "of", "key", "terms"], "report_type": "business|historical|scientific|technical|legal|literary" }} """ return agent.run(analysis_prompt, output_type="json") def generate_report(full_text, domain, file_names): """Generate domain-specific report""" report_prompt = f""" Create a comprehensive {domain} report from these documents: Files: {', '.join(file_names)} Content: {full_text[:20000]} # First 20k chars for report Report structure: 1. Executive Summary 2. Key Findings/Analysis 3. Important Metrics/Statistics (if applicable) 4. Timeline of Events (historical) or Financial Overview (business) 5. Conclusions/Recommendations Include markdown formatting with headings, bullet points, and tables where appropriate. """ return agent.run(report_prompt) def process_files(file_paths): """Process multiple files and generate report""" full_text = "" file_names = [] structured_data = [] for file_path in file_paths: try: with open(file_path, 'r', encoding='utf-8', errors='ignore') as f: content = f.read() full_text += f"\n\n--- {os.path.basename(file_path)} ---\n{content}" file_names.append(os.path.basename(file_path)) # Structure detection for tables structure_prompt = f"Convert to CSV:\n{content}\nReturn ONLY CSV:" csv_output = agent.run(structure_prompt) df = pd.read_csv(StringIO(csv_output), dtype=str).dropna(how='all') structured_data.append(df) except Exception as e: print(f"Error processing {file_path}: {str(e)}") # Domain analysis domain_info = analyze_content(full_text) # Report generation report = generate_report(full_text, domain_info["report_type"], file_names) # Combine structured data combined_df = pd.concat(structured_data, ignore_index=True) if structured_data else pd.DataFrame() return domain_info, report, combined_df def handle_upload(files): """Handle multiple file uploads""" if not files: return [gr.update()]*6 + [gr.update(visible=False)] domain_info, report, df = process_files(files) outputs = [ gr.Markdown(value=f"**Document Type:** {domain_info['domain']}"), gr.Markdown(value=f"**Key Themes:** {', '.join(domain_info['keywords'][:5])}"), gr.Dataframe(value=df.head(10) if not df.empty else None), gr.Markdown(value=report), gr.update(visible=True), gr.update(visible=True), gr.update(visible=not df.empty) ] return outputs def download_report(report_type): """Generate downloadable reports""" timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"{report_type}_report_{timestamp}" temp_dir = tempfile.gettempdir() formats = { 'pdf': f"{filename}.pdf", 'docx': f"{filename}.docx", 'csv': f"{filename}.csv" } # Generate files (implementation depends on your PDF/DOCX libraries) # Add your preferred reporting libraries here return [os.path.join(temp_dir, f) for f in formats.values()] with gr.Blocks() as demo: gr.Markdown("# Multi-Document Analysis System") with gr.Row(): with gr.Column(scale=1): file_input = gr.File( label="Upload Documents", file_count="multiple", file_types=[".txt", ".doc", ".docx"], type="filepath" ) process_btn = gr.Button("Analyze Documents", variant="primary") with gr.Group(visible=False) as meta_group: domain_display = gr.Markdown() keywords_display = gr.Markdown() with gr.Column(scale=2): with gr.Tabs(): with gr.TabItem("Structured Data"): data_table = gr.Dataframe(label="Combined Data Preview", interactive=False) with gr.TabItem("Analysis Report"): report_display = gr.Markdown() with gr.Group(visible=False) as download_group: gr.Markdown("### Download Options") with gr.Row(): pdf_btn = gr.DownloadButton("PDF Report") docx_btn = gr.DownloadButton("Word Report") csv_btn = gr.DownloadButton("CSV Data") process_btn.click( fn=handle_upload, inputs=file_input, outputs=[ domain_display, keywords_display, data_table, report_display, meta_group, download_group, csv_btn ] ) # Connect download buttons (implement actual file generation) # pdf_btn.click(fn=lambda: download_report("pdf"), outputs=pdf_btn) # docx_btn.click(fn=lambda: download_report("docx"), outputs=docx_btn) # csv_btn.click(fn=lambda: download_report("csv"), outputs=csv_btn) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)