Spaces:
Build error
Build error
File size: 6,086 Bytes
6a0ec6a 237bccb f3a5662 1767e22 6d4e0a3 f3a5662 a808dce 237bccb f3a5662 237bccb 91561ce 6d4e0a3 e1e2089 6d4e0a3 a808dce a573881 a808dce e1e2089 a808dce e1e2089 a808dce a5b666f a808dce 237bccb a808dce a5b666f a808dce f3a5662 a808dce f776bb6 a808dce f3a5662 6d4e0a3 a808dce f3a5662 a808dce 237bccb a808dce 811c7ec 3df9eeb a808dce 811c7ec f3a5662 a808dce 6a0ec6a a808dce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import os
import gradio as gr
from sqlalchemy import text
from smolagents import CodeAgent, HfApiModel
import pandas as pd
from io import StringIO
import tempfile
from datetime import datetime
from database import (
engine,
create_dynamic_table,
clear_database,
insert_rows_into_table
)
agent = CodeAgent(
tools=[],
model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)
def analyze_content(full_text):
"""Determine document type and key themes"""
analysis_prompt = f"""
Analyze this text and identify its primary domain:
{full_text[:10000]} # First 10k characters for analysis
Possible domains:
- Business/Financial
- Historical
- Scientific
- Technical
- Legal
- Literary
Return JSON format:
{{
"domain": "primary domain",
"keywords": ["list", "of", "key", "terms"],
"report_type": "business|historical|scientific|technical|legal|literary"
}}
"""
return agent.run(analysis_prompt, output_type="json")
def generate_report(full_text, domain, file_names):
"""Generate domain-specific report"""
report_prompt = f"""
Create a comprehensive {domain} report from these documents:
Files: {', '.join(file_names)}
Content:
{full_text[:20000]} # First 20k chars for report
Report structure:
1. Executive Summary
2. Key Findings/Analysis
3. Important Metrics/Statistics (if applicable)
4. Timeline of Events (historical) or Financial Overview (business)
5. Conclusions/Recommendations
Include markdown formatting with headings, bullet points, and tables where appropriate.
"""
return agent.run(report_prompt)
def process_files(file_paths):
"""Process multiple files and generate report"""
full_text = ""
file_names = []
structured_data = []
for file_path in file_paths:
try:
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
content = f.read()
full_text += f"\n\n--- {os.path.basename(file_path)} ---\n{content}"
file_names.append(os.path.basename(file_path))
# Structure detection for tables
structure_prompt = f"Convert to CSV:\n{content}\nReturn ONLY CSV:"
csv_output = agent.run(structure_prompt)
df = pd.read_csv(StringIO(csv_output), dtype=str).dropna(how='all')
structured_data.append(df)
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
# Domain analysis
domain_info = analyze_content(full_text)
# Report generation
report = generate_report(full_text, domain_info["report_type"], file_names)
# Combine structured data
combined_df = pd.concat(structured_data, ignore_index=True) if structured_data else pd.DataFrame()
return domain_info, report, combined_df
def handle_upload(files):
"""Handle multiple file uploads"""
if not files:
return [gr.update()]*6 + [gr.update(visible=False)]
domain_info, report, df = process_files(files)
outputs = [
gr.Markdown(value=f"**Document Type:** {domain_info['domain']}"),
gr.Markdown(value=f"**Key Themes:** {', '.join(domain_info['keywords'][:5])}"),
gr.Dataframe(value=df.head(10) if not df.empty else None),
gr.Markdown(value=report),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=not df.empty)
]
return outputs
def download_report(report_type):
"""Generate downloadable reports"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{report_type}_report_{timestamp}"
temp_dir = tempfile.gettempdir()
formats = {
'pdf': f"{filename}.pdf",
'docx': f"{filename}.docx",
'csv': f"{filename}.csv"
}
# Generate files (implementation depends on your PDF/DOCX libraries)
# Add your preferred reporting libraries here
return [os.path.join(temp_dir, f) for f in formats.values()]
with gr.Blocks() as demo:
gr.Markdown("# Multi-Document Analysis System")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="Upload Documents",
file_count="multiple",
file_types=[".txt", ".doc", ".docx"],
type="filepath"
)
process_btn = gr.Button("Analyze Documents", variant="primary")
with gr.Group(visible=False) as meta_group:
domain_display = gr.Markdown()
keywords_display = gr.Markdown()
with gr.Column(scale=2):
with gr.Tabs():
with gr.TabItem("Structured Data"):
data_table = gr.Dataframe(label="Combined Data Preview", interactive=False)
with gr.TabItem("Analysis Report"):
report_display = gr.Markdown()
with gr.Group(visible=False) as download_group:
gr.Markdown("### Download Options")
with gr.Row():
pdf_btn = gr.DownloadButton("PDF Report")
docx_btn = gr.DownloadButton("Word Report")
csv_btn = gr.DownloadButton("CSV Data")
process_btn.click(
fn=handle_upload,
inputs=file_input,
outputs=[
domain_display,
keywords_display,
data_table,
report_display,
meta_group,
download_group,
csv_btn
]
)
# Connect download buttons (implement actual file generation)
# pdf_btn.click(fn=lambda: download_report("pdf"), outputs=pdf_btn)
# docx_btn.click(fn=lambda: download_report("docx"), outputs=docx_btn)
# csv_btn.click(fn=lambda: download_report("csv"), outputs=csv_btn)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |