File size: 3,435 Bytes
2bab301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3a07c
230626d
 
 
 
 
4600657
5c3a07c
 
230626d
 
 
 
 
5c3a07c
4600657
5c3a07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230626d
5c3a07c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bab301
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import pandas as pd
import numpy as np
import yfinance as yf
import altair as alt
import plotly.figure_factory as ff
import pydeck as pdk
from vega_datasets import data as vds
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from streamlit_image_comparison import image_comparison


def on_input_change():
    user_input = st.session_state.user_input
    st.session_state.past.append(user_input)
    st.session_state.generated.append(
        {"data": "The messages from Bot\nWith new line", "type": "normal"}
    )


def on_btn_click():
    del st.session_state.past[:]
    del st.session_state.generated[:]


def main():
    st.title(" US Real Estate Data and Market Trends")
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
    with col2:
        option = st.selectbox(" Current / Historical", [" Current ", " Historical"])
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        option = st.selectbox(" Median / Mean", [" Median ", " Mean"])
    with col2:
        option = st.selectbox(" San Francisco", [" San Francisco"])
    (
        col1,
        col2,
    ) = st.columns(2)
    with col1:
        selected_color = st.color_picker(" Choose a palate", "#FF0000")
    with col2:
        value = st.slider(" No of colors", min_value=0, max_value=100, value=50, key=5)
    if st.checkbox(" Show raw data"):
        st.write("Checkbox checked!")
    st.subheader(" Global 3D Visualization")
    st.pydeck_chart(
        pdk.Deck(
            map_style=None,
            initial_view_state=pdk.ViewState(
                latitude=37.76, longitude=-122.4, zoom=11, pitch=50
            ),
            layers=[
                pdk.Layer(
                    "HexagonLayer",
                    data=pd.DataFrame(
                        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
                        columns=["lat", "lon"],
                    ),
                    get_position="[lon, lat]",
                    radius=200,
                    elevation_scale=4,
                    elevation_range=[0, 1000],
                    pickable=True,
                    extruded=True,
                ),
                pdk.Layer(
                    "ScatterplotLayer",
                    data=pd.DataFrame(
                        np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
                        columns=["lat", "lon"],
                    ),
                    get_position="[lon, lat]",
                    get_color="[200, 30, 0, 160]",
                    get_radius=200,
                ),
            ],
        )
    )
    st.subheader(" 2D Visualization")
    st.altair_chart(
        alt.Chart(
            pd.DataFrame(
                {
                    "x": np.random.rand(50),
                    "y": np.random.rand(50),
                    "size": np.random.randint(10, 100, 50),
                    "color": np.random.rand(50),
                }
            )
        )
        .mark_circle()
        .encode(
            x="x",
            y="y",
            size="size",
            color="color",
            tooltip=["x", "y", "size", "color"],
        )
        .properties(width=600, height=400),
        use_container_width=True,
    )


if __name__ == "__main__":
    main()