Praveen998 commited on
Commit
5c3a07c
·
1 Parent(s): 4600657

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +71 -90
app.py CHANGED
@@ -26,109 +26,90 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" Corona Dashboard")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- option = st.selectbox(" San Francisco", [" San Francisco"])
36
- with col2:
37
  option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
38
- if st.checkbox(" Show raw data"):
39
- st.write("Checkbox checked!")
40
- if st.button(" Visualize"):
41
- st.write("Button clicked!")
42
- st.subheader(" Global Data")
43
- df = pd.read_csv(
44
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
45
- encoding="iso-8859-1",
46
- )
47
- freq = df
48
- freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
49
- df_v = pd.read_csv(
50
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
51
- )
52
- fig = make_subplots(
53
- rows=2,
54
- cols=2,
55
- column_widths=[0.6, 0.4],
56
- row_heights=[0.4, 0.6],
57
- specs=[
58
- [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
59
- [None, {"type": "surface"}],
60
- ],
61
- )
62
- fig.add_trace(
63
- go.Scattergeo(
64
- lat=df["Latitude"],
65
- lon=df["Longitude"],
66
- mode="markers",
67
- hoverinfo="text",
68
- showlegend=False,
69
- marker=dict(color="crimson", size=4, opacity=0.8),
70
- ),
71
- row=1,
72
- col=1,
73
- )
74
- fig.add_trace(
75
- go.Bar(
76
- x=freq["x"][0:10],
77
- y=freq["Country"][0:10],
78
- marker=dict(color="crimson"),
79
- showlegend=False,
80
- ),
81
- row=1,
82
- col=2,
83
- )
84
- fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
85
- fig.update_geos(
86
- projection_type="orthographic",
87
- landcolor="white",
88
- oceancolor="MidnightBlue",
89
- showocean=True,
90
- lakecolor="LightBlue",
91
- )
92
- fig.update_xaxes(tickangle=45)
93
- fig.update_layout(
94
- template="plotly_dark",
95
- margin=dict(r=10, t=25, b=40, l=60),
96
- annotations=[
97
- dict(
98
- text="Source: NOAA",
99
- showarrow=False,
100
- xref="paper",
101
- yref="paper",
102
- x=0,
103
- y=0,
104
- )
105
- ],
106
- )
107
- st.plotly_chart(fig)
108
  (
109
  col1,
110
  col2,
111
  ) = st.columns(2)
112
  with col1:
113
- st.table(
114
- {
115
- "Country": ["USA", "Canada", "UK", "Australia"],
116
- "Population (millions)": [331, 38, 66, 25],
117
- "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
118
- }
119
- )
120
  with col2:
121
- df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
122
- fig = px.pie(
123
- df,
124
- values="pop",
125
- names="country",
126
- title="Population of American continent",
127
- hover_data=["lifeExp"],
128
- labels={"lifeExp": "life expectancy"},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  )
130
- fig.update_traces(textposition="inside", textinfo="percent+label")
131
- st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
 
134
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" US Real Estate Data and Market Trends")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
 
 
35
  option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
36
+ with col2:
37
+ option = st.selectbox(" Current / Historical", [" Current ", " Historical"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  (
39
  col1,
40
  col2,
41
  ) = st.columns(2)
42
  with col1:
43
+ option = st.selectbox(" Median / Mean", [" Median ", " Mean"])
 
 
 
 
 
 
44
  with col2:
45
+ option = st.selectbox(" San Francisco", [" San Francisco"])
46
+ (
47
+ col1,
48
+ col2,
49
+ ) = st.columns(2)
50
+ with col1:
51
+ selected_color = st.color_picker(" Choose a palate", "#FF0000")
52
+ with col2:
53
+ value = st.slider(" No of colors", min_value=0, max_value=100, value=50, key=5)
54
+ if st.checkbox(" Show raw data"):
55
+ st.write("Checkbox checked!")
56
+ st.subheader(" Global 3D Visualization")
57
+ st.pydeck_chart(
58
+ pdk.Deck(
59
+ map_style=None,
60
+ initial_view_state=pdk.ViewState(
61
+ latitude=37.76, longitude=-122.4, zoom=11, pitch=50
62
+ ),
63
+ layers=[
64
+ pdk.Layer(
65
+ "HexagonLayer",
66
+ data=pd.DataFrame(
67
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
68
+ columns=["lat", "lon"],
69
+ ),
70
+ get_position="[lon, lat]",
71
+ radius=200,
72
+ elevation_scale=4,
73
+ elevation_range=[0, 1000],
74
+ pickable=True,
75
+ extruded=True,
76
+ ),
77
+ pdk.Layer(
78
+ "ScatterplotLayer",
79
+ data=pd.DataFrame(
80
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
81
+ columns=["lat", "lon"],
82
+ ),
83
+ get_position="[lon, lat]",
84
+ get_color="[200, 30, 0, 160]",
85
+ get_radius=200,
86
+ ),
87
+ ],
88
  )
89
+ )
90
+ st.subheader(" 2D Visualization")
91
+ st.altair_chart(
92
+ alt.Chart(
93
+ pd.DataFrame(
94
+ {
95
+ "x": np.random.rand(50),
96
+ "y": np.random.rand(50),
97
+ "size": np.random.randint(10, 100, 50),
98
+ "color": np.random.rand(50),
99
+ }
100
+ )
101
+ )
102
+ .mark_circle()
103
+ .encode(
104
+ x="x",
105
+ y="y",
106
+ size="size",
107
+ color="color",
108
+ tooltip=["x", "y", "size", "color"],
109
+ )
110
+ .properties(width=600, height=400),
111
+ use_container_width=True,
112
+ )
113
 
114
 
115
  if __name__ == "__main__":